論文

論文

2023年 |2022年 |2021年
2020年 | 2019年 | 2018年 | 2017年 | 2016年 | 2015年 | 2014年 | 2013年 | 2012年 | 2011年
2010年 | 2009年 | 2008年 | 2007年 | 2006年 | 2005年 | 2004年 | 2003年 | 2002年 | 2001年
2000年 | 1999年 | 1998年 | 1997年 | 1996年 | 1995年 | 1994年 | 1993年 | 1992年 | 1991年 | 1990年
( 受理された年で示しています )

2023年
  1. “Evaluation of picture change effects on fractional occupation number states in noble gas atoms”
    Chinami Takashima, Hiromi Nakai, Theor. Chem. Acc., in press (2024).
  2. “Range Separation Method for Density Functional Theory Based on Two-electron Infinite-order Two-component Hamiltonian”
    Chinami Takashima, Hiromi Nakai, J. Chemt. Theory Comput., in press (2023).
  3. “Ring-opening Polymerization of ε-Caprolactone by Zr(IV) Tris(β-Diketonates): Electronic Character of Complexes in Initiation and Propagation Steps”
    Muhammad Yusuf, Nova Pratiwi Indriyani, Arifin, Aditya Wibawa Sakti, Hiromi Nakai, I Made Arcana, Muhamad Abdulkadir Martoprawiro, Yessi Permana, Inorg. Chim. Acta, in press (2024).
  4. “Fabrication of Solid Polymer Electrolyte Based on Carboxymethyl Cellulose Complexed with Lithium Acetate Salt as Lithium Ion Battery Separator”
    Dhea Afrisa Darmawan, Evi Yulianti, Qolby Sabrina, Kensuke Ishida, Aditya Wibawa Sakti, Hiromi Nakai, Edi Pramono, Sun Theo Constan Ndruru, Polym. Compos., in press (2023).
  5. “Born–Oppenheimer molecular dynamics study on collective protein dynamics invoked by ultrafast photoisomerization of retinal chromophore in bacteriorhodopsin”
    H. Nakai, U. Uratani, T. Morioka, J. Ono, Chem. Phys. Lett., 830(5), 140818-1-5 (2023).
  6. “Quantum mechanical assessment on the optical properties of capsanthin conformers”
    P. A. Putro, A. W. Sakti, F. Ahmad, H. Nakai, Husin Alatas, J. Comput. Chem., 44(30), 2319-2331 (2023).
  7. “Neutral-to-ionic photoinduced phase transition of tetrathiafulvalene-p-chloranil by electronic and vibrational excitation: A real-time nuclear–electronic dynamics simulation study”
    T. Hanada, U. Uratani, H. Nakai, J. Chem. Phys., 159(5), 054101-1-7 (2023).
  8. “Matrix-decomposed two-electron integrals in infinite-order two-component method”
    C. Takashima, H. Nakai, Chem. Phys. Lett., 828, 140714-1-9 (2023). (Edfitor’s Choice)
  9. “Unveiling controlling factors of the S0/S1 minimum energy conical intersection (3): Frozen orbital analysis based on the spin-flip theory”
    T. Yoshikawa, Y. Ikabata, H. Nakai, K. Ogawa, K. Sakata, J. Chem. Phys., 158(20), 204116-1-14 (2023).
  10. “Enabling large-scale quantum path integral molecular dynamics simulations through the integration of DCDFTBMD and i-PI codes”
    Y. Nishimura, H. Nakai, J. Chem. Phys., 158(16), 164101-1-8 (2023). (Special Topic on High Performance Computing in Chemical Physics)
  11. “Nanoscale and real-time nuclear–electronic dynamics simulation study of charge transfer at donor–acceptor interface in organic photovoltaics”
    H. Uratani, H. Nakai, J. Phys. Chem. Lett., 14(9), 2292-2300 (2023). (Supplementary Journal Cover)
  12. “Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations”
    Y. Nishimura, H. Nakai, J. Chem. Phys., 158(5), 054106-1-10 (2023). (Special Topic on Modern Semiempirical Electronic Structure Methods)
2022年
  1. “Experimental and Theoretical Evidence for Relativistic Catalytic Activity in C–H Activation of N-Phenylbenzamide Using a Cationic Iridium Complex”
    C. Takashima, H. Kurita, H. Takano, Y. Ikabata, T. Shibata, H. Nakai, J. Phys. Chem. A, 126, 7627-7638 (2022). (Journal Cover)
  2. “Effect of Li+ addition during initial stage of electrodeposition process on nucleation and growth of Zn”
    Y. Onabuta, M. Kunimoto, S. Wang, Y. Fukunaka, H. Nakai, T. Homma, J. Electrochem. Soc., 169(9), 092504 (2022). (Focus Issue on Nucleation and Growth: Measurements, Processes, and Materials)
  3. “Quantum algorithm of divide-and-conquer unitary coupled cluster method with variational quantum eigensolver”
    T. Yoshikawa, T. Takanashi, H. Nakai, J. Chem. Theory Comput., 18(9), 5360-5373 (2022). (Supplementary Journal Cover)
  4. “Hydroxide ion mechanism for long-range proton pumping in the third proton transfer of bacteriorhodopsin”
    J. Ono, C. Okada, H. Nakai, Chem. Phys. Chem., 23(22), e202200109-1-11 (2022).
  5. “Analysis of the behavior of Zn atoms with Pb additive on the surface during Zn electrodeposition”
    Y. Onabuta, M. Kunimoto, F. Ono, Y. Fukunaka, H. Nakai, G. Zangari, T. Homma, Electrochem. Commun., 138, 107291 (2022).
  6. “Photoexcited charge manipulation in conjugated polymers bearing a Ru(II) complex catalyst for visible-light CO2 reduction”
    A. Nakada, R. Miyakawa, R. Itagaki, K. Kato, C. Takashima, A. Saeki, A. Yamakata, R. Abe, H. Nakai, H.-C. Chang, J. Mater. Chem. A, 10(37), 19821-19828 (2022).
  7. “Dynamic hetero-metallic bondings visualized by sequential atom imaging”, M. Inazu, Y. Akada, T. Imaoka, Y. Hayashi, C. Takashima, H. Nakai, K. Yamamoto”
    M. Inazu, Y. Akada, T. Imaoka, Y. Hayashi, C. Takashima, H. Nakai, K. Yamamoto, Nat. Commun., 13, 2968 (2022).
  8. “Multiscale simulation of irregular shape evolution during the initial stage of Zn electrodeposition on a negative electrode surface”
    Y. Onabuta, M. Kunimoto, S. Wang, Y. Fukunaka, H. Nakai, T. Homma, J. Phys. Chem. C, 126(11), 5224-5232 (2021).
  9. “Multiple protonation states in ligand-free SARS-CoV-2 main protease revealed by large-scale quantum molecular dynamics simulations”
    J. Ono, U. Koshimizu, Y. Fukunishi, H. Nakai, Chem. Phys. Lett., 794, 139489-1-8 (2022). (Journal Cover)
2021年
  1. “Scalable Ehrenfest molecular dynamics exploiting the locality of density-functional tight-binding Hamiltonian”
    H. Uratani, T. Yoshikawa, H. Nakai, J. Chem. Theory Comput., 17, 7384-7396 (2021).
  2. “Direct near infrared-light-activatable phthalocyanine catalysts”
    Y. Katsurayama, Y. Ikabata, H. Maeda, M. Segi, H. Nakai, T. Furuyama, Euro. Chem. J, 28, e202103223-1-8 (2022). (Hot Paper, Journal Cover)
  3. “Tetramesityldiborane(4) can emit dual fluorescence responding to the structural change around the B–B bond”
    Y. Shoji, N. Tanaka, Y. Ikabata, H. Sakai, T. Hasobe, N. Koch, H. Nakai, T. Fukushima, Angew. Chem. Int. Ed., 61, e202113549-1-5 (2022). (Very Important Paper)
  4. “Quantum-mechanical molecular dynamics simulations on secondary proton transfer in bacteriorhodopsin using realistic models”
    H. Nakai, T. Takemura, J. Ono, Y. Nishimura, J. Phys. Chem. B, 125(39), 10947-10963 (2021).
  5. “An air- and water-stable B4N4-heteropentalene serving as a host material for a phosphorescent OLED”
    J. Kashida, Y. Shoji, Y. Ikabata, H. Taka, H. Sakai, T. Hasobe, H. Nakai; T. Fukushima, Angew. Chem. Int. Ed., 60(44), 23812-23818 (2021).
  6. “An element-substituted cyclobutadiene exhibiting high-energy blue phosphorescence”
    Y. Shoji, Y. Ikabata, I. Rhyzhii, R. Ayub, O. El Bakouri, T. Sato, Q. Wang, T. Miura, B. S. B. Karunathilaka, Y. Tsuchiya, C. Adachi, H. Ottosson, H. Nakai, T. Ikoma, T. Fukushima, Angew. Chem. Int. Ed., 60(40), 21817-21823 (2021). (Very Important Paper)
  7. “Quantum chemical calculations for up to one hundred million atoms using DCDFTBMD code on supercomputer Fugaku”
    Y. Nishimura, H. Nakai, Chem. Lett., 50(8), 1546-1550 (2021).
  8. “Assessing locally range-separated hybrid functionals from a gradient expansion of the exchange energy density”
    T. Maier, Y. Ikabata, H. Nakai, J. Chem. Phys., 154(21), 214101-1-16 (2021).
  9. “Database-assisted local unitary transformation method for two-electron integrals in two-component relativistic calculations”
    C. Takashima, J. Seino, H. Nakai, Chem. Phys. Lett., 777, 138691-1-8 (2021).(Editor’s Choice)
  10. “Effects of A-site composition of perovskite (Sr1–xBaxZrO3) oxides on H atoms adsorption, migration and reaction”
    Y. Tanaka, K. Murakami, S. Doi, K. Ito, K. Saegusa, Y. Mizutani, S. Hayashi, T. Higo, H. Tsuneki, H. Nakai, Y. Sekine, RSC Adv., 11, 7621-7626 (2021).
  11. “Trajectory surface hopping approach to condensed-phase nonradiative relaxation dynamics using divide-and-conquer type spin-flip time-dependent density-functional tight-binding”
    H. Uratani, T. Yoshikawa, H. Nakai, J. Chem. Theory Comput., 17, 1290-1300 (2021).
  12. “Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over CeO2(111) surface”
    K. Murakami, Y. Mizutani, H. Sampei, A. Ishikawa, Y. Tanaka, S. Hayashi, S. Doi, T. Higo, H. Tsuneki, H. Nakai, Y. Sekine, Phys. Chem. Chem. Phys., 23, 4509-4516 (2021). (Journal Cover)
  13. “Is oxygen diffusion faster in bulk CeO2 or on (111)-CeO2 surface? A theoretical study”
    A. W. Sakti, C.-P. Chou, Y. Nishimura, H. Nakai, Chem. Lett., 50, 568-571 (2021).
2020年
  1. “Fast nonadiabatic molecular dynamics via spin-flip time-dependent density-functional tight-binding approach: Application to nonradiative relaxation of tetraphenylethylene with locked rings”
    H. Uratani, T. Morioka, T. Yoshikawa, H. Nakai, J. Chem. Theory Comput., 16, 7299-7313 (2020). (Journal Cover)
  2. “Robust design of D-π-A model compounds using digital structures for organic DSSC applications”
    F. Wang, S. Langford, H. Nakai, J. Mol. Graph. Model., 102, 107798-1-9 (2021).
  3. “Machine-learned electron correlation model based on frozen core approximation”
    Y. Ikabata, R. Fujisawa, J. Seino, T. Yoshikawa, H. Nakai, J. Chem. Phys., 153, 184108-1-13 (2020).
  4. “Hydroxide ion carrier of proton pumps in bacteriorhodopsin: Primary proton transfer”
    J. Ono, M. Imai, Y. Nishimura, H. Nakai, J. Phys. Chem. B, 124, 8524-8539 (2020). (Journal Cover)
  5. “Finite-temperature-based time-dependent density functional theory method for static electron correlation systems”
    T. Yoshikawa, H. Nakai, J. Chem. Phys., 152, 244111-1-13 (2020).
  6. “Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited state calculations”
    H. Uratani, H. Nakai, J. Chem. Phys., 152, 224109-1-14 (2020). (Special Topic on 65 Years of Electron Transfer)
  7. “Simulating the coupled structural–electronic dynamics of photo-excited lead iodide perovskites”
    H. Uratani, H. Nakai, J. Phys. Chem. Lett., 11, 4448-4455 (2020).
  8. “Relativistic local hybrid functionals and their impact on 1s core orbital energies”
    T. M. Maier, Y. Ikabata, H. Nakai, J. Chem. Phys., 152, 214103-1-13 (2020).
  9. “Catalytic dehydrogenation of ethane over doped perovskite via the Mars – van Krevelen mechanism”
    K. Toko, H. Saito, Y. Hosono, K. Murakami, S. Misaki, T. Higo, S. Ogo, H. Tsuneki, S. Maeda, K. Hashimoto, H. Nakai, Y. Sekine, J. Phys. Chem. C, 124, 10462-10469 (2020).
  10. “Hierarchical parallelization of divide-and-conquer density functional tight-binding molecular dynamics and metadynamics simulations”
    Y. Nishimura, H. Nakai, J. Comput. Chem., 41, 1759-1772 (2020). (Journal Cover)
  11. “Solvent selection scheme using machine learning based on physi-cochemical description of solvent molecules: Application to cyclic organometallic reaction”
    M. Fujinami, H. Maekawara, R. Isshiki, J. Seino, J. Yamaguchi, H. Nakai, Bull. Chem. Soc. Jpn., 93, 841-845 (2020).
  12. “Weighted histogram analysis method for multiple short-time metadynamics simulations”
    J. Ono, H. Nakai, Chem. Phys. Lett., 751, 137384-1-7 (2020).
  13. “Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential”
    M. Fujinami, R. Kageyama, J. Seino, Y. Ikabata, H. Nakai, Chem. Phys. Lett., 748, 137358-1-5 (2020).
  14. “Unveiling controlling factors of the S0/S1 minimum energy conical intersection (2): Application to penalty function method”
    M. Inamori, Y. Ikabata, T. Yoshikawa, H. Nakai, J. Chem. Phys., 152, 144108-1-11 (2020).
  15. “Spin-flip time-dependent density-functional tight-binding method for application to conical intersection”
    M. Inamori, T. Yoshikawa, Y. Ikabata, Y. Nishimura, H. Nakai, J. Comput. Chem., 41, 1538-1548 (2020).
  16. “Quantum chemical reaction prediction method based on machine learning”
    M. Fujinami, J. Seino, H. Nakai, Bull. Chem. Soc. Jpn., 93, 685-693 (2020). (Selected Paper)
  17. “Density-functional tight-binding study of carbonaceous species diffusion on (100)-γ-Al2O3 surface”
    A. W. Sakti, C.-P. Chou, H. Nakai, ACS Omega, 5, 6862-6871 (2020).
  18. “Agglomeration suppression of Fe-supported catalyst and its utilization for low-temperature ammonia synthesis in an electric field”
    R. Sakai, K. Murakami, Y. Mizutani, Y. Tanaka, S. Hayashi, A. Ishikawa, T. Higo, S. Ogo, H. Tsuneki, H. Nakai, Y. Sekine, ACS Omega, 5, 6846-6851 (2020).
  19. “Large-scale molecular dynamics simulation for ground and excited states based on divide-and-conquer long-range corrected density functional tight-binding method”
    N. Komoto, T. Yoshikawa, Y. Nishimura, H. Nakai, J. Chem. Theory Comput., 16, 2369-2378 (2020).
  20. “Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube”
    K. Otake, K. Otsubo, T. Komatsu, S. Dekura, J. M. Taylor, R. Ikeda, K. Sugimoto, A. Fujiwara, Y. Nanba, T. Ishimoto, M. Koyama, C. Chou, A. Sakti, Y. Nishimura, H. Nakai, H. Kitagawa, Nature Commun., 11, 843-1-7 (2020).
  21. “Large-scale excited-state calculation using dynamical polarizability evaluated by divide-and-conquer based coupled cluster linear response method”
    T. Yoshikawa, J. Yoshihara, H. Nakai, J. Chem. Phys., 152, 024102-1-12 (2020).
  22. “Heteroatom doping effects on interaction of H2O and CeO2 (111) surfaces studied using density functional theory: Key roles of ionic radius and dispersion”
    K. Murakami, S. Ogo, A. Ishikawa, Y. Takeno, T. Higo, H. Tsuneki, H. Nakai, Y. Sekine, J. Chem. Phys., 152, 014707-1-7 (2020).
  23. “Quantum mechanical molecular dynamics simulations of polaron formation in methylammonium lead iodide perovskite”
    H. Uratani, C-P. Chou, H. Nakai, Phys. Chem. Chem. Phys., 22, 97-106 (2020). (PCCP 2019 HOT Article)
2019年
  1. “Restoring the iso-orbital limit of the kinetic energy density in relativistic density functional theory”
    T. M. Maier, Y. Ikabata, H. Nakai, J. Chem. Phys., 151, 174114-1-9 (2019).
  2. “Semi-local machine-learned kinetic energy density functional demonstrating smooth potential energy curves”
    J. Seino, R. Kageyama, M. Fujinami, Y. Ikabata, H. Nakai, Chem. Phys. Lett., 734, 136732-1-6 (2019).
  3. “Bond energy density analysis combined with informatics technique”
    H. Nakai, J. Seino, K. Nakamura, J. Phys. Chem. A, 123, 7777-7784 (2019).
  4. “Efficient semi-numerical implementation of relativistic exact exchange within the infinite-order two-component method using a modified chain-of-spheres method”
    T. M. Maier, Y. Ikabata, H. Nakai, J. Chem. Theory Comput., 15, 4745-4763 (2019).
  5. “GPU-accelerated large-scale excited-state simulation based on divide-and-conquer time-dependent density-functional tight-binding”
    T. Yoshikawa, N. Komoto, Y. Nishimura, H. Nakai, J. Comput. Chem., 40, 2778-2786 (2019).
  6. “Sodium- and potassium-hydrate melts containing asymmetric imide anions for high-voltage aqueous batteries”
    Q. Zheng, S. Miura, S. Ko, K. Miyazaki, E. Watanabe, M. Okoshi, C.-P. Chou, Y. Nishimura, H. Nakai, T. Kamiya, T. Honda, J. Akikusa, Y. Yamada, A. Yamada, Angew. Chem. Int. Ed., 58, 14202-14207 (2019).
  7. “Governing factors of supports of ammonia synthesis in an electric field found using density funconal theory”
    K. Murakami, Y. Tanaka, S. Hayashi, R. Sakai, Y. Hisai, A. Ishikawa, T. Higo, S. Ogo, J. G. Seo, H. Tsuneki, H. Nakai, Y. Sekine, J. Chem. Phys., 151, 064708-1-8 (2019).
  8. “Machine-learned electron correlation model based on correlation energy density at complete basis set limit”
    T. Nudejima, Y. Ikabata, J. Seino, T. Yoshikawa, H. Nakai, J. Chem. Phys., 151, 024104-1-12 (2019).
  9. “Virtual reaction condition optimization based on machine learning for a small number of experiments in high-dimensional continuous and discrete variables”
    M. Fujinami, J. Seino, T. Nukazawa, S. Ishida, T. Iwamoto, H. Nakai, Chem. Lett., 48, 961-964 (2019). (Editor’s Choice)
  10. “Temperature- and pressure-dependent adsorption configuration of NO molecules on Rh(111) surfaces: A theoretical study”
    T. Hirai, M. Okoshi, A. Ishikawa, H. Nakai, Surf. Sci., 686, 58-62 (2019)
  11. “Reversible sodium metal electrodes: Is fluorine an essential interphasial component?”
    K. Doi, Y. Yamada, M. Okoshi, J. Ono, C-P. Chou, H. Nakai, A. Yamada, Angew. Chem. Int. Ed., 58, 8024-8028 (2019).
  12. “Finite-temperature based linear-scaling divide-and-conquer self-consistent field method for static electron correlation systems”
    T. Yoshikawa, T. Doi, H. Nakai, Chem. Phys. Lett., 726, 18-23 (2019).
  13. “Extension and acceleration of relativistic density functional theory based on transformed density operator”
    Y. Ikabata, T. Oyama, M. Hayami, J. Seino, H. Nakai, J. Chem. Phys., 150, 164104 (2019).
  14. “First-principle study of the oxidation mechanism of formaldehyde and hypophosphite in the electroless deposition process”
    Y. Onabuta; M. Kunimoto, H. Nakai, T. Homma, Electrochim. Acta, 307, 536-542 (2019).
  15. “DCDFTBMD: Divide-and-conquer density functional tight-binding program for huge-system quantum mechanical molecular dynamics simulations”
    Y. Nishimura, H. Nakai, J. Comput. Chem., 40, 1538-1549 (2019).
  16. “Development of large-scale excited-state calculations based on the divide-and-conquer time-dependent density functional tight-binding method”
    N. Komoto, T. Yoshikawa, J. Ono, Y. Nishimura, H. Nakai, J. Chem. Theory Comput., 15, 1719-1727 (2019). (Cover Image)
2018年
  1. “Unveiling Controlling Factors of the S0/S1 Minimum Energy Conical Intersection: A Theoretical Study”
    H. Nakai, M. Inamori, Y. Ikabata, Q. Wang, J. Phys. Chem. A, 122, 8905-8910 (2018). (Front Cover Image)
  2. “Fractional-occupation-number based divide-and-conquer coupled-cluster theory”
    T. Yoshikawa, H. Nakai, Chem. Phys. Lett., 712, 184-189 (2018).
  3. “Theoretical investigation on structural effects of Pt-Mn catalyst on activity and selectivity for methylcyclohexane dehydrogenation”
    S. Manabe, A. Nakano, S. Nagatake, T. Yabe, S. Ogo, H. Nakai, Y. Sekine, Chem. Phys. Lett., 711, 73-76 (2018).
  4. “RAQET: Large-scale two-component relativistic quantum chemistry program package”
    M. Hayami, J. Seino, Y. Nakajima, M. Nakano, Y. Ikabata, T. Yoshikawa, T. Oyama, K. Hiraga, S. Hirata, H. Nakai, J. Comput. Chem., 39, 2333-2344 (2018). (Front Cover Image)
  5. “Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation”
    Y. Ikabata, R. Aiba, T. Iwanade, H. Nishizawa, F. Wang, H. Nakai, J. Chem. Phys., 148, 184110 (2018).
  6. “Spectroscopic and computational analyses of liquid-liquid interfacial reaction mechanism of boric acid esterification with 2,2,4-trimethyl-1,3-pentanediol in boron extraction processes”
    M. Kunimoto, D. Bothe, R. Tamura, T. Oyanagi, Y. Fukunaka, H. Nakai, T. Homma, J. Phys. Chem. C, 122, 10423-10429 (2018).
  7. “Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation method”
    M. Tarumi, H. Nakai, Chem. Phys. Lett., 700, 149 (2018).
  8. “Derivative of electron repulsion integral using accompanying coordinate expansion and transferred recurrence relation method for long contraction and high angular momentum”
    M. Hayami, J. Seino, H. Nakai, Int. J. Quant. Chem., 118, e25640 (2018).
  9. “Simulations of synthesis of the boron-nitride nanostructures in a hot, high pressure gas volume”
    P. S. Krstic, L. Han, S. Irle, H. Nakai, Chem. Sci., 9, 3803 (2018).
  10. “Gauge-origin independent formalism of two-component relativistic framework based on unitary transformation in nuclear magnetic shielding constant”
    M. Hayami, J. Seino, H. Nakai, J. Chem. Phys., 148, 114109 (2018).
  11. “Theoretical Analysis of Carrier Ion Diffusion in Superconcentrated Electrolyte Solutions for Sodium-Ion Batteries”
    M. Okoshi, C. Chou, H. Nakai, J. Phys. Chem. B, 122, 2600 (2018).
  12. “Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density”
    J. Seino, R. Kageyama, M. Fujinami, Y. Ikabata, H. Nakai, J. Chem. Phys., 148, 241705 (2018).
  13. “Electron-hopping brings lattice strain and high catalytic activity in low temperature oxidative coupling of methane in an electric field”
    S. Ogo, H. Nakatsubo, K. Iwasaki, A. Sato, K. Murakami, T. Yabe, A. Ishikawa, H. Nakai, Y. Sekine, J. Phys. Chem. C, 122, 2089 (2018).
  14. “Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice Ih, Ice Ic, Ice III, and Melted Ice VI Phases”
    A. W. Sakti, Y. Nishimura, C. Chou, H. Nakai, J. Phys. Chem. A, 122, 33 (2018).
  15. “Rigorous pKa Estimation of Amine Species Using Density-Functional Tight-Binding-Based Metadynamics Simulations”
    A. W. Sakti, Y. Nishimura, H. Nakai, J. Chem. Theory Comput., 14, 351 (2018).
  16. “Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis”
    A. Ishikawa, T. Doi, H. Nakai, J. Catal., 357, 213 (2018).
2017年
  1. “Parallel implementation of efficient charge–charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations”
    Y. Nishimura, H. Nakai, J. Comput. Chem., 39, 105 (2017).
  2. “Divide-and-conquer density-functional tight-binding molecular dynamics study on the formation ofcarbamate ions during CO2 chemical absorption in amine solutions”
    A. W. Sakti, Y. Nishimura, H. Sato, H. Nakai, Bull. Chem. Soc. Jpn., 90, 1230 (2017).
  3. “Computerized implementation of higher-order electron-correlation methods and their linear-scaling divide-and-conquer extensions”
    M. Nakano, T. Yoshikawa, S. Hirata, J. Seino, and H. Nakai, J. Comput. Chem., 38, 2520 (2017).
  4. “Density functional theory analysis of elementary reactions in NOx reduction on Rh surface and Rh clusters”
    F. Deushi, A. Ishikawa, H. Nakai, J. Phys. Chem. C, 121, 15272 (2017).
  5. “Electrocatalystic synthesis of ammonia by surface proton hopping”
    R. Manabe, H. Nakatsubo, A. Gondo, K. Murakami, S. Ogo, H. Tsuneki, M. Ikeda, A. Ishikawa, H. Nakai, Y. Sekine, Chemical Science, 8, 5434 (2017).
  6. “Near-Infrared Absorption of π-Stacking Columns Composed of Trioxotriangulene Neutral Radicals”
    Y. Ikabata, Q. Wang, T. Yoshikawa, A. Ueda, T. Murata, K. Kariyazono, M. Moriguchi, H. Okamoto, Y. Morita, H. Nakai, npj Quantum Materials, 2, 27 (2017).
  7. “Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method”
    T. Oyama, Y. Ikabata, J. Seino and H. Nakai, Chem. Phys. Lett., 680, 37 (2017).
  8. “Decomposition of Effective Exchange Integrals of Radical Dimers Using Bond Energy Density Analysis”
    Y. Ikabata and H. Nakai, Chem. Lett., 46, 879 (2017).
  9. “Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level”
    H. Nakai and T. Yoshikawa, J. Chem. Phys., 146, 124123-1-12 (2017).
  10. “Universal formulation of second-order generalized Møller-Plesset perturbation theory for a spin-dependent two-component relativistic many-electron Hamiltonian”
    M. Nakano, J. Seino, and H. Nakai, Chem. Phys. Lett., 675, 137 (2017).
  11. “Development of spin-dependent relativistic open-shell Hartree–Fock theory with time-reversal symmetry (II): The restricted open-shell approach”
    M. Nakano, R. Nakamura, J. Seino, and H. Nakai, Int. J. Quantum Chem., 117, e25366 (2017).
  12. “Relativistic effect on enthalpy of formation for transition-metal complexes”
    Y. Nakajima, J. Seino, and H. Nakai, Chem. Phys. Lett., 673, 24 (2017).
  13. “Unveiling a New Aspect of Simple Aryboronic Esters: Long-Lived Room-Temperature Phosphorescence from Heavy-Atom-Free Molecules”
    Y. Shoji, Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto, N. Tanaka, J. Seino, H. Nakai, and T. Fukushima, J. Am. Chem. Soc., 139, 2728 (2017).
  14. “Systematic Investigation of the Thermodynamic Properties of Amine Solvents for CO2 Chemical Absorption Using the Cluster-Continuum Model”
    K. Teranishi, A. Ishikawa, H. Sato, and H. Nakai, Bull. Chem. Soc. Jpn., 90, 451 (2017).
  15. “Divide-and-Conquer-Type Density-Functional Tight-Binding Simulations of Hydroxide Ion Diffusion in Bulk Water”
    A. W. Sakti, Y. Nishimura, and H. Nakai, J. Phys. Chem. B., 121, 1362 (2017).
  16. “Development of spin-dependent relativistic open-shell Hartree–Fock theory with time-reversal symmetry (I): The unrestricted approach”
    M. Nakano, J. Seino, and H. Nakai, Int. J. Quantum Chem., 117, e25356 (2017).
  17. “Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions”
    M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, and H. Nakai, J. Electrochem. Soc., 164, A54 (2017).
2016年
  1. “Relativistic frozen core potential scheme with relaxation of core electrons”
    Y. Nakajima, J. Seino, M. Hayami, and H. Nakai, Chem. Phys. Lett., 663, 97 (2016).
  2. “Efficient pole-search algorithm for dynamic polarizability: Towards alternative excited-state calculation for large systems”
    H. Nakai, T. Yoshikawa, and Y. Nonaka, J. Comput. Chem., 38, 7 (2017).
  3. “The divide-and-conquer second-order proton propagator method based on nuclear orbital plus molecular orbital theory for the efficient computation of proton binding energies”
    Y. Tsukamoto, Y. Ikabata, J. Romero, A. Reyes, and H. Nakai, Phys. Chem. Chem. Phys., 18, 27422 (2016).
  4. “Informatics-Based Energy Fitting Scheme for Correlation Energy at Complete Basis Set Limit”
    J. Seino and H. Nakai, J. Comput. Chem., 37, 2304 (2016).
  5. “Assessment of self-consistent field convergence in spin-dependent relativistic calculations”
    M. Nakano, J. Seino, and H. Nakai, Chem. Phys. Lett., 657, 65 (2016).
  6. “Quantum chemical approach for condensed-phase thermochemistry (IV): Solubility of gaseous molecules”
    A. Ishikawa, M. Kamata, and H. Nakai, Chem. Phys. Lett., 655-656, 103 (2016).
  7. “Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density functional tight-binding, and massively parallel computation”
    H. Nishizawa, Y. Nishimura, M. Kobayashi, S. Irle, and H. Nakai, J. Comput. Chem., 37, 1983 (2016).
  8. “Quantum chemistry beyond Born-Oppenheimer approximation on a quantum computer: a simulated phase estimation study”
    L. Veis, J. Višňák, H. Nishizawa, H. Nakai, and J. Pittner, Int. J. Quantum Chem., 116, 1328 (2016).
  9. “Implementation of Analytical Energy Gradient of Spin-Dependent General Hartree–Fock Method Based on the Infinite-Order Douglas–Kroll–Hess Relativistic Hamiltonian with Local Unitary Transformation”
    Y. Nakajima, J. Seino, and H. Nakai, J. Chem. Theory Comput., 12, 2181 (2016).
  10. “Quantum chemical approach for condensed-phase thermochemistry (III): Accurate evaluation of proton hydration energy and standard hydrogen electrode potential”
    A. Ishikawa and H. Nakai, Chem. Phys. Lett., 650, 159 (2016).
  11. “Contrasting mechanisms for CO2 absorption and regeneration processes in aqueous amine solutions: Insights from density-functional tight-binding molecular dynamics simulations”
    H. Nakai, Y. Nishimura, T. Kaiho, T. Kubota, and H. Sato, Chem. Phys. Lett., 647, 127 (2016).
2015年
  1. “Divide-and-conquer-type density-functional tight-binding simulations of proton diffusion in a bulk water system”
    H. Nakai, A. W. Sakti, and Y. Nishimura, J. Phys. Chem. B, 120, 217 (2016).
  2. “Theoretical Study of Extremely Long yet Stable Carbon-Carbon Bonds: Effect of Attractive C∙∙∙H Interactions and Small Radical Stabilization of Diamondoids”
    D. Cho, Y. Ikabata, T. Yoshikawa, J. Y. Lee, and H. Nakai, Bull. Chem. Soc. Jpn., 88, 1636 (2015).
  3. “Theoretical Analysis of the Oxidation Potentials of Organic Electrolyte Solvents”
    M. Okoshi, A. Ishikawa, Y. Kawamura, and H. Nakai, ECS Electrochem. Lett., 4, A103 (2015).
  4. “Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions”
    M. Hayami, J. Seino, and H. Nakai, J. Chem. Phys., 142, 204110 (2015).
  5. “A divide-and-conquer method with approximate Fermi levels for parallel computations”
    T. Yoshikawa and H. Nakai, Theor. Chem. Acc., 134, 53 (2015).
  6. “Revisiting the extrapolation of correlation energies to complete basis set limit”
    M. Okoshi, T. Atsumi, and H. Nakai, J. Comput. Chem., 36, 1075 (2015).
  7. “Quantum chemical approach for condensed-phase thermochemistry (II): Applications to formation and combustion reactions of liquid organic molecules”
    A. Ishikawa and H. Nakai, Chem. Phys. Lett., 624, 6 (2015).
2014年
  1. “Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals”
    D. Cho, K. C. Ko, Y. Ikabata, K. Wakayama, T. Yoshikawa, H. Nakai, and J. Y. Lee, J. Chem. Phys., 142, 024318 (2015).
  2. “Local response dispersion method in periodic systems: Implementation and assessment”
    Y. Ikabata, Y. Tsukamoto, Y. Imamura, and H. Nakai, J. Comput. Chem., 36, 303 (2015).
  3. “Linearity condition for orbital energies in density functional theory (V): Extension to excited state calculations”
    Y. Imamura, K. Suzuki, T. Iizuka, and H. Nakai, Chem. Phys. Lett., 618, 30 (2015).
  4. “Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units”
    T. Yoshikawa and H. Nakai, J. Comput. Chem., 36, 164 (2015).
  5. “Quantum chemical approach for condensed-phase thermochemistry: Proposal of a harmonic solvation model”
    H. Nakai and A. Ishikawa, J. Chem. Phys., 141, 174106 (2014).
  6. “Extension of accompanying coordinate expansion and recurrence relations method for general-contraction basis sets”
    M. Hayami, J. Seino, and H. Nakai, J. Comput. Chem., 35, 1517 (2014).
  7. “Acceleration of self-consistent field convergence in ab initio molecular dynamics simulation with multiconfigurational wave function”
    M. Okoshi and H. Nakai, J. Comput. Chem., 35, 1473 (2014).
2013年
  1. “Frozen core potential scheme with a relativistic electronic Hamiltonian: theoretical connection between the model potential and all-electron treatments”
    J. Seino, M. Tarumi, and H. Nakai, Chem. Phys. Lett., 592, 341 (2014).
  2. “Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation”
    Y. Nakajima, J. Seino, and H. Nakai, J. Chem. Phys., 139, 244107 (2013).
  3. “Improving quasiparticle second order electron propagator calculations with the spin-component-scaled technique”
    J. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett., 591, 82 (2014).
  4. “Theoretical study on the selective fluorescence of PicoGreen: Binding models and photophysical properties”
    M. Okoshi, P. Saparpakorn, Y. Takada, S. Hannongbua, and H. Nakai, Bull. Chem. Soc. Jpn., 87, 267 (2014).
  5. “Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents”
    M. Okoshi, Y. Yamada, A. Yamada, and H. Nakai, J. Electrochem. Soc., 160, A2160 (2013).
  6. “Kinetic energy decomposition scheme based on information theory”
    Y. Imamura, J. Suzuki, and H. Nakai, J. Comput. Chem., 34, 2787 (2013).
  7. “Superphenalenyl: Theoretical design of a π-conjugated planar hydrocarbon radical”
    Y. Ikabata, K.-y. Akiba, and H. Nakai, Chem. Lett., 42, 1386 (2013).
  8. “Theoretical analysis of the influence of surface defects on the reactivity of hypophosphite ions”
    M. Kunimoto, A. Otomo, N. Takahashi, H. Nakai, and T. Homma, Electrochim. Acta., 113, 785 (2013).
  9. “Local unitary transformation method toward practical electron correlation calculations with scalar relativistic effect in large-scale molecules”
    J. Seino and H. Nakai, J. Chem. Phys., 139, 034109 (2013).
  10. “Theoretical study on stability of lithium ion battery in charging process: Analysis based on partial charge and partial energy”
    Y. Yamauchi and H. Nakai, J. Electrochem. Soc., 160, A1364 (2013).
  11. “Novel approach to excited-state calculations of large molecules based on divide-and-conquer method: Application to photoactive yellow protein”
    T. Yoshikawa, M. Kobayashi, A. Fujii, and H. Nakai, J. Phys. Chem. B, 117, 5565 (2013).
  12. “Linearity condition for orbital energies in density functional theory (III): Benchmark of total energies”
    Y. Imamura, R. Kobayashi, and H. Nakai, J. Comput. Chem., 34, 1218 (2013).
  13. “An effective energy gradient expression for divide-and-conquer second-order Møller-Plesset perturbation theory”
    M. Kobayashi and H. Nakai, J. Chem. Phys., 138, 044102 (2013).
  14. “Assessment of local response dispersion method for open-shell systems”
    Y. Ikabata and H. Nakai, Chem. Phys. Lett., 556, 386 (2013).
2012年
  1. “Cristaxenicin A, an Antiprotozoal Xenicane Diterpenoid from the Deep Sea Gorgonian Acanthoprimnoa cristata
    S. Ishigami, Y. Goto, N. Inoue, S. Kawazu, Y. Matsumoto, Y. Imahara, M. Tarumi, H. Nakai, N. Fusetani, and Y. Nakao, J. Org. Chem., 77, 10962 (2012).
  2. “Generalized Møller-Plesset Multiconfiguration Perturbation Theory Applied to Open-Shell Antisymmetric Product of Strongly Orthogonal Geminals Reference Wavefunction”
    M. Tarumi, M. Kobayashi, and H. Nakai, J. Chem. Theory Comput., 8, 4330 (2012).
  3. “Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb Interaction”
    J. Seino and H. Nakai, J. Chem. Phys., 137, 144101 (2012).
  4. “Extension of local response dispersion method to excited state calculation based on time-dependent density functional theory”
    Y. Ikabata and H. Nakai, J. Chem. Phys., 137, 124106 (2012).
  5. “Divide-and-conquer electronic-structure study on the mechanism of the West Nile Virus NS3 protease inhibitor”
    P. Saparpakorn, M. Kobayashi, and H. Nakai, Bull. Chem. Soc. Jpn., 86, 67 (2013).
  6. “Local unitary transformation method for large-scale two-component relativistic calculations: Case for a one-electron Dirac Hamiltonian”
    J. Seino and H. Nakai, J. Chem. Phys., 136, 244102 (2012).
  7. “Direct alkoxysilylation of alkoxysilanes for the synthesis of explicit alkoxysiloxane oligomers”
    R. Wakabayashi, M. Tamai, K. Kawahara, H. Tachibana, Y. Imamura, H. Nakai, and K. Kuroda, J. Organomet. Chem., 716, 26 (2012).
  8. “Development of the explicitly correlated Gaussian-nuclear orbital plus molecular orbital theory: Incorporation of electron-electron correlation”
    H. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai, Chem. Phys. Lett., 533, 100 (2012).
  9. “Dynamic hyperpolarizability calculations of large systems: the linear-scaling divide-and-conquer approach”
    M. Kobayashi, T. Touma, and H. Nakai, J. Chem. Phys., 136, 084108 (2012).
  10. “Constrained self-consistent field method revisited toward theoretical designs of functional materials under external field”
    Y. Yamagata, Y. Imamura, and H. Nakai, Chem. Phys. Lett., 530, 132 (2012).
  11. “Theoretical analysis of adsorption structure of hydrated hypophosphite ion on Pd (111) surface”
    M. Kunimoto, K. Seki, H. Nakai, and T. Homma, Electrochemistry, 80, 222 (2012).
2011年
  1. “Theoretical analysis on catalytic activity of metal surfaces on reaction of hypophosphite ion”
    M. Kunimoto, H. Nakai, and T. Homma, Electrochemistry, 80, 1 (2011).
  2. “Evaluation of electron-repulsion integral of the explicitly correlated Gaussian-nuclear orbital plus molecular orbital theory”
    H. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai, Chem. Phys. Lett., 521, 142 (2012).
  3. “Bond energy analysis revisited and designed toward a rigorous methodology”
    H. Nakai, H. Ohashi, Y. Imamura, and Y. Kikuchi, J. Chem. Phys., 135, 124113 (2011).
  4. “Linearity condition for orbital energies in density functional theory (II): Application to global hybrid functional”
    Y. Imamura, R. Kobayashi, and H. Nakai, Chem. Phys. Lett., 513, 130 (2011).
  5. “Density Functional Theory Analysis for Orbital Interaction between Hypophosphite Ions and Metal Surfaces”
    M. Kunimoto, H. Nakai, and T. Homma, J. Electrochem. Soc., 158, D626 (2011).
  6. “Linear-scaling divide-and-conquer second-order Moller-Plesset perturbation calculation for open-shell systems: Implementation and application”
    T. Yoshikawa, M. Kobayashi, and H. Nakai, Theor. Chem. Acc., 130, 411 (2011).
  7. “Rigorous non-Born-Oppenheimer theory: Combination of explicitly correlated Gaussian method and nuclear orbital plus molecular orbital theory”
    M. Hoshino, H. Nishizawa, and H. Nakai, J. Chem. Phys., 135, 024111 (2011).
  8. “Density Functional Theory Analysis of Reaction Mechanism of Hypophosphite Ions on Metal Surfaces”
    M. Kunimoto, T. Shimada, S. Odagiri, H. Nakai, and T. Homma, J. Electrochem. Soc., 158, D585 (2011).
  9. “Finite Field Evaluation of Static (Hyper)polarizabilities based on the Linear-Scaling Divide-and-Conquer Method”
    T. Touma, M. Kobayashi, and H. Nakai, Theor. Chem. Acc., 130, 701 (2011).
  10. “Two-Level Hierarchical Parallelization of Second-Order Moller-Plesset Perturbation Calculations in Divide-and-Conquer Method”
    M. Katouda, M. Kobayashi, H. Nakai, and S. Nagase, J. Comput. Chem., 32, 2756 (2011).
  11. “Energy expression of the chemical bond between atoms in metal oxides”
    Y. Shinzato, Y. Saito, M. Yoshino, H. Yukawa, M. Morinaga, T. Baba, and H. Nakai, J. Phys. Chem. Solids, 72, 853 (2011).
  12. “Linearity condition for orbital energies in density functional theory: Construction of orbital-specific hybrid functional”
    Y. Imamura, R. Kobayashi, and H. Nakai, J. Chem. Phys., 134, 124113 (2011).
  13. “Theoretical Design of Hexacoordinate Hypervalent Carbon Compounds by Analyzing Substituent Effect”
    H. Nakai, M. Okoshi, T. Atsumi, Y. Kikuchi, and K.-y. Akiba, Bull. Chem. Soc. Jpn., 84, 505 (2011).
  14. “Interpretation of Intermolecular Geometric Isotope Effect in Hydrogen Bonds: Nuclear Orbital plus Molecular Orbital Study”
    Y. Ikabata, Y. Imamura, and H. Nakai, J. Phys. Chem. A, 115, 1433 (2011).
  15. “Reconsidering an Analytical Gradient Expression within a Divide-and-Conquer Self-Consistent Field Approach: Exact Formula and Its Approximate Treatment”
    M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, and H. Nakai, J. Chem. Phys., 134, 034105 (2011).
2010年
  1. “Divide-and-Conquer Self-Consistent Field Calculation for Open-Shell Systems: Implementation and Application”
    M. Kobayashi, T. Yoshikawa, and H. Nakai, Chem. Phys. Lett., 500, 172 (2010).
  2. “Local Response Dispersion Method II. Generalized Multicenter Interactions”
    T. Sato, and H. Nakai, J. Chem. Phys., 133, 194101 (2010).
  3. “Generalized Møller-Plesset Partitioning in Multiconfiguration Perturbation Theory”
    M. Kobayashi, Á. Szabados, H. Nakai, and P. R. Surján, J. Chem. Theory Comput., 6, 2024 (2010).
  4. “Unusual Energy Balance between Atoms in Post-Perovskite MgSiO3
    H. Hirate, H. Sawai, Y. Saito, H. Yukawa, M. Morinaga, and H. Nakai, J. Am. Ceram. Soc., 93, 3449 (2010).
  5. “Theoretical Study of Hypervalent Bonds in 1,6-Diaza-1,6-dihydro- and 1,6-Dihydro-1,6-dioxapentalene Systems with a Heteroatom X at 6a Position (X = 14-16 Group Atoms)”
    T. Atsumi, T. Abe, K.-y. Akiba, and H. Nakai, Bull. Chem. Soc. Jpn., 83, 892 (2010).
  6. “Acceleration of Self-Consistent-Field Convergence in Ab Initio Molecular Dynamics and Monte Carlo Simulations and Geometry Optimization”
    T. Atsumi and H. Nakai, Chem. Phys. Lett., 490 (1-3), 102 (2010).
  7. “Application of Real-Time Time-Dependent Density Functional Theory with the CV-B3LYP Functional to Core Excitations”
    T. Akama, Y. Imamura, and H. Nakai, Chem. Lett., 39, 407 (2010).
  8. “Theoretical Study on Bond-Switching in 1,6-Dihydro-6a-thia-1,6-diazapentalene (10-S-3) Systems Compared with Corresponding Oxygen Analogues”
    T. Atsumi, T. Abe, K.-y. Akiba, and H. Nakai, Bull. Chem. Soc. Jpn., 83, 520 (2010).
  9. “Extension of Energy Density Analysis to Periodic-Boundary-Condition Calculations with Plane-Wave Basis Functions”
    Y. Imamura, A. Takahashi, T. Okada, T. Ohno, and H. Nakai, Phys. Rev. B, 81, 115136 (2010).
  10. “Short-Time Fourier Transform Analysis of Real-Time Time-Dependent Hartree-Fock and Time-Dependent Density Functional Theory Calculations with Gaussian Basis Functions”
    T. Akama and H. Nakai, J. Chem. Phys., 132, 054104 (2010).
  11. “Time-Dependent Hartree-Fock Frequency-Dependent Polarizability Calculation Applied to Divide-and-Conquer Electronic Structure Method”
    T. Touma, M. Kobayashi, and H. Nakai, Chem. Phys. Lett., 485, 247 (2010).
  12. “Observation by UV-Visible and NMR Spectroscopy and Theoretical Confirmation of 4-Isopropyltropolonate Ion, 4-Isopropyltropolone (Hinokitiol), and Protonated 4-Isopropyltropolone in Acetonitrile”
    M.Hojo, T. Ueda, M. Ike, K. Okamura, T. Sugiyama, M. Kobayashi, and H. Nakai, J. Chem. Eng. Data, 55, 1986 (2010).
2009年
  1. “Density Functional Method Including Weak Interactions: Dispersion Coefficients Based on the Local Response Approximation”
    T. Sato and H. Nakai, J. Chem. Phys., 131, 224104 (2009).
  2. “Quantitative Evaluation of Catalytic Effect of Metal Chlorides on the Decomposition Reaction of NaAlH4
    H. Hirate, Y. Saito, I. Nakaya, H. Sawai, H. Yukawa, M. Morinaga, and H. Nakai, Int. J. Quant. Chem., 111, 950 (2011).
  3. “Divide-and-Conquer-Based Linear-Scaling Approach for Traditional and Renormalized Coupled Cluster Methods with Single, Double, and Noniterative Triple Excitations”
    M. Kobayashi and H. Nakai, J. Chem. Phys., 131, 114108 (2009).
  4. “Extension of Density Functional Theory to Nuclear Orbital plus Molecular Orbital Theory: Self-Consistent Field Calculations with the Colle-Salvetti Electron-Nucleus Correlation Functional”
    Y. Imamura, Y. Tsukamoto, H. Kiryu, and H. Nakai, Bull. Chem. Soc. Jpn., 82, 1133 (2009). (BCSJ selected paper)
  5. “Extension of Frozen Orbital Analysis to the Tamm-Dancoff Approximation to Time-Dependent Density Functional Theory”
    Y. Imamura, T. Baba, and H. Nakai, Chem. Lett., 38, 528 (2009).
  6. “Electronic Temperature in Divide-and-Conquer Electronic Structure Calculation Revisited: Assessment and Improvement of Self-Consistent Field Convergence”
    T. Akama, M. Kobayashi, and H. Nakai, Int. J. Quant. Chem., 109, 2706 (2009).
  7. “Dual-Level Hierarchical Scheme for Linear-Scaling Divide-and-Conquer Correlation Theory”
    M. Kobayashi and H. Nakai, Int. J. Quant. Chem., 109, 2227 (2009).
  8. “Quantitative Approach to the Understanding of Catalytic Effect of Metal Oxides on the Desorption Reaction of MgH2
    H. Hirate, Y. Saito, I. Nakaya, H. Sawai, H. Yukawa, M. Morinaga, T. Baba, and H. Nakai, Int. J. Quant. Chem., 109, 2793 (2009).
  9. “One-body Energy Decomposition Schemes Revisited: Assessment of Mulliken-, Grid-, and Conventional Energy Density Analyses”
    Y. Kikuchi, Y. Imamura, and H. Nakai, Int. J. Quant. Chem., 109, 2464 (2009).
  10. “Density Functional Study on Core Ionization Spectra of Cytidine and Its Fragments”
    A. Thompson, S. Saha, F. Wang, T. Tsuchimochi, A. Nakata, Y. Imamura, and H. Nakai, Bull. Chem. Soc. Jpn., 82, 187 (2009).
2008年
  1. “Extension of Linear-Scaling Divide-and-Conquer-Based Correlation Method to Coupled Cluster Theory with Singles and Doubles Exciations”
    M. Kobayashi and H. Nakai, J. Chem. Phys., 129 (4), 044103 (2008).
  2. “UV-Visble, 1H and 13C NMR Spectroscopic Studies on the Interaction between Protons or Alkaline Earth Metal Ions and the Benzoate Ion in Acetonitrile”
    M. Hojo, T. Ueda, M. Ike, M. Kobayashi, and H. Nakai, J. Mol. Liq., 145, 152 (2009).
  3. “Determination of Active Sites Based on Unified Analysis of Potential Energy Profile in Chemical Reaction: Application to C-H Activation of Methane by Ti(IV)-Imido Complex”
    H. Nakai, J. Suzuki, and Y. Kikuchi, Chem. Phys. Lett., 460, 347 (2008).
  4. “Discovery of Hexacoordinate Hypervalent Carbon Compounds: Density Functional Study”
    Y. Kikuchi, M. Ishii, K.-y. Akiba, and H. Nakai, Chem. Phys. Lett., 460, 37 (2008).
  5. “Application of the Sakurai-Sugiura Projection Method to Core-Excited-State Calculation by Time-Dependent Density Functional Theory”
    T. Tsuchimochi, M. Kobayashi, A. Nakata, Y. Imamura, and H. Nakai, J. Comput. Chem., 29, 2311 (2008).
  6. “Natural Bond Orbital-Based Energy Density Analysis for Correlated Methods: Second-Order Møller-Plesset perturbation and Coupled-Cluster Singles and Doubles”
    Y. Imamura, T. Baba, and H. Nakai, Int. J. Quant. Chem., 108, 1316 (2008).
  7. “Analysis on Excitations of Molecules with Ih Symmetry: Frozen Orbital Analysis and General Rules”
    T. Baba, Y. Imamura, M. Okamoto, and H. Nakai, Chem. Lett., 37, 322 (2008).
  8. “Molecular Orbital Propagation to Accelerate Self-Consistent-Field Convergence in an Ab Initio Molecular Dynamics Simulation”
    T. Atsumi and H. Nakai, J. Chem. Phys., 128, 094101 (2008).
  9. “Estimation of Redox Potential of Strained Si by Density Functional Theory Calculation”
    K. Sakata, S. Ishizaki, H. Nakai, and T. Homma, J. Phys. Chem. C, 112, 3538 (2008).
  10. “Energy Density Analysis for Second-Order Møller-Plesset Perturbation Theory and Coupled-Cluster Theory with Singles and Doubles: Application to C2H4-CH4 Complexes”
    Y. Imamura and H. Nakai, J. Comput. Chem., 29, 1555 (2008).
2007年
  1. “New Expression of the Chemical Bond in Perovskite-Type Oxides”
    Y. Shinzato, Y. Saito, H. Yukawa, M. Morinaga, T. Baba, and H. Nakai, Mater. Sci. Forum, 561-565, 1823 (2007).
  2. “Is the Divide-and-Conquer Hartree-Fock Method Valid for Calculations of Delocalized Systems?”
    T. Akama, A. Fujii, M. Kobayashi, and H. Nakai, Mol. Phys., 105, 2799 (2007).
  3. “Colle-Salvetti-Type Correction for Electron-Nucleus Correlation in the Nuclear Orbital Plus Molecular Orbital Theory”
    Y. Imamura, H. Kiryu, and H. Nakai, J. Comput. Chem., 29, 735 (2008).
  4. “Isotope Effect in Dihydrogen-Bonded Systems: Application of Analytical Energy Gradient Method in the Nuclear Orbital Plus Molecular Orbital Theory”
    H. Nakai, Y. Ikabata, Y. Tsukamoto, Y. Imamura, K. Miyamoto, and M. Hoshino, Mol. Phys., 105, 2649 (2007).
  5. “A Unified Approach to the Analysis of the Chemical Bond in Hydrides and Hydrocarbons”
    Y. Shinzato, H. Yukawa, M. Morinaga, T. Baba, and H. Nakai, Acta Mater., 55, 6673 (2007).
  6. “Theoretical Determination of Hypervalent Bond Energy of 10-S-3 Sulfurane Derivatives”
    Y. Yamauchi, K.-y. Akiba, and H. Nakai, Chem. Lett., 36, 1120 (2007).
  7. “Alternative Linear-Scaling Methodology for the Second-Order Møller-Plesset Perturbation Calculation Based on the Divide-and-Conquer Method”
    M. Kobayashi, Y. Imamura, and H. Nakai, J. Chem. Phys., 127, 074103 (2007).
  8. “Development of Analytic Energy Gradient Method in Nuclear Orbital Plus Molecular Orbital Theory”
    M. Hoshino, Y. Tsukamoto, and H. Nakai, Int. J. Quant. Chem., 107, 2575 (2007).
  9. “Application of Bond Energy Density Analysis (Bond-EDA) to Diels-Alder Reaction”
    T. Baba, M. Ishii, Y. Kikuchi, and H. Nakai, Chem. Lett., 36, 616 (2007).
  10. “Energy Density Analysis of the Chemical Bond between Atoms in Perovskite-Type Hydrides”
    Y. Shinzato, H. Yukawa, M. Morinaga, T. Baba, and H. Nakai, J. Alloys Compd., 446-447, 96 (2007).
  11. “Theoretical Design of Monofunctional Psoralen Compounds in Photochemotherapy”
    A. Nakata, T. Baba, and H. Nakai, Bull. Chem. Soc. Jpn., 80 (7), 1341 (2007). (BCSJ selected paper)
  12. “Extension of the Core-Valence-Rydberg B3LYP Functional to Core-Excited-State Calculations of Third-Row Atoms”
    A. Nakata, Y. Imamura, and H. Nakai, J. Chem. Theory Comput., 3, 1295 (2007).
  13. “Extension of Energy Density Analysis to Periodic-Boundary-Condition Calculation: Evaluation of Locality in Extended Systems”
    H. Nakai, Y. Kurabayashi, M. Katouda, and T. Atsumi, Chem. Phys. Lett., 438, 132 (2007).
  14. “Implementation of Divide-and-Conquer Method Including Hartree-Fock Exchange Interaction”
    T. Akama, M. Kobayashi, and H. Nakai, J. Comput. Chem., 28, 2003 (2007).
  15. Ab Initio Molecular Dynamics Simulation of Energy Relaxation Process of Protonated Water Dimer”
    Y. Yamauchi, S. Ozawa, and H. Nakai, J. Phys. Chem. A, 111, 2062 (2007).
  16. “UV-Visible and 1H or 13C NMR Spectroscopic Studies on the Specific Interaction between Lithium Ions and the Anion from Tropolone or 4-Isopropyltropolone (Hinokitiol) and on the Formation of Protonated Tropolones in Acetonitrile or Other Solvents”
    M. Hojo, T. Ueda, T. Inoue, M. Ike, M. Kobayashi, and H. Nakai, J. Phys. Chem. B, 111, 1759 (2007).
  17. “Density Functional Theory Study on the Reaction Mechanism of Reductants for Electroless Ag Deposition Process”
    T. Shimada, H. Nakai, and T. Homma, J. Electrochem. Soc., 154, D273 (2007).
  18. “Grid-Based Energy Density Analysis: Implementation and Assessment”
    Y. Imamura, A. Takahashi, and H. Nakai, J. Chem. Phys., 126, 034103 (2007).
  19. “Hybrid Treatment Combining the Translation- and Rotation-Free Nuclear Orbital Plus Molecular Orbital Theory with Generator Coordinate Method: TRF-NOMO/GCM”
    K. Sodeyama, H. Nishizawa, M. Hoshino, M. Kobayashi, and H. Nakai, Chem.
    Phys. Lett., 433, 409 (2007).
  20. “Molecular Orbital Study on the Oxidation Mechanism of Hydrazine and Hydroxylamine as Reducing Agents for Electroless Deposition Process”
    T. Shimada, A. Tamaki, H. Nakai, and T. Homma, Electrochemistry, 75, 45 (2007).
2006年
  1. “Second-Order Møller-Plesset Perturbation Energy Obtained from Divide-and-Conquer Hartree-Fock Density Matrix”
    M. Kobayashi, T. Akama, and H. Nakai, J. Chem. Phys., 125, 204106 (2006).
  2. “Elimination of Translational and Rotational Motions in Nuclear Orbital Plus Molecular Orbital Theory: Contribution of the First-Order Rovibration Coupling”
    K. Miyamoto, M. Hoshino, and H. Nakai, J. Chem. Theory Comput., 2, 1544 (2006).
  3. “Hybrid exchange-correlation functional for core, valence, and Rydberg excitations: Core-valence-Rydberg B3LYP”
    A. Nakata, Y. Imamura, and H. Nakai, J. Chem. Phys., 125, 064109 (2006).
  4. “Wavelet Transform Analysis of Ab Initio Molecular Dynamics Simulation: Application to Core-Excitation Dynamics of BF3
    T. Otsuka and H. Nakai, J. Comput. Chem., 28, 1137 (2007).
  5. “Natural Atomic Orbital Based Energy Density Analysis: Implementation and Applications”
    T. Baba, M. Takeuchi, and H. Nakai, Chem. Phys. Lett., 424, 193 (2006).
  6. “Elimination of Translational and Rotational Motions in Nuclear Orbital Plus Molecular Orbital Theory: Application of Møller-Plesset Perturbation Theory”
    M. Hoshino and H. Nakai, J. Chem. Phys., 124, 194110 (2006).
  7. “Description of core excitations by time-dependent density functional theory with local density approximation, generalized gradient approximation, meta-generalized gradient approximation, and hybrid functionals”
    Y. Imamura, T. Otsuka, and H. Nakai, J. Comput. Chem., 28, 2067 (2007).
  8. “Analysis of Self-Interaction Correction for Describing Core Excited States”
    Y. Imamura and H. Nakai, Int. J. Quant. Chem., 107, 23 (2007).
  9. “Non-Born-Oppenheimer Effects Predicted by Translation-Free Nuclear Orbital Plus Molecular Orbital Method”
    K. Sodeyama, K. Miyamoto, and H. Nakai, Chem. Phys. Lett., 421, 72 (2006).
  10. “Time-Dependent Density Functional Theory Calculations for Core-Excited States: Assessment of Standard Exchange-Correlation Functionals and Development of a Novel Hybrid Functional”
    A. Nakata, Y. Imamura, T. Otsuka, and H. Nakai, J. Chem. Phys., 124, 094105 (2006).
  11. “Implementation of Surján’s Density Matrix Formulae for Calculating Second-Order Møller-Plesset Energy”
    M. Kobayashi and H. Nakai, Chem. Phys. Lett., 420, 250 (2006).
  12. “Energy Density Analysis of Cluster Size Dependence of Surface-Molecule Interactions (II): Formate Adsorption onto a Cu(111) Surface”
    H. Nakai and Y. Kikuchi, J. Comput. Chem., 27, 917 (2006).
  13. “Time-Dependent Density Functional Theory (TDDFT) Calculations for Core-Excited States: Assessment of an Exchange Functional Combining the Becke88 and van Leeuwen-Baerends-Type Functionals”
    Y. Imamura and H. Nakai, Chem. Phys. Lett., 419, 297 (2006).
2005年
  1. “Reply to “Comment on ‘Elimination of Translational and Rotational Motions in Nuclear Orbital Plus Molecular Orbital Theory’ ” “
    H. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys., 123, 237102 (2005).
  2. “Isotope Effects in the Reaction of H+(H2O)2/D+(D2O)2 with Acetone/Dimethylsulfoxide”
    Y. Kawai, Y. Okada, S. Yamaguchi, K. Takeuchi, Y. Yamauchi, and H. Nakai, J. Mass Spectrom. Soc. Jpn., 53, 305 (2005).
  3. “Synthesis of the Pivalamidate-Bridged Pentanuclear Platinum(II, III) Linear Complexes with Pt…Pt Interactions”
    K. Matsumoto, S. Arai, M. Ochiai, W. Chen, A. Nakata, H. Nakai, and S. Kinoshita, Inorg. Chem., 44, 8552 (2005).
  4. “Characterization of Strained Si Wafer Surface by Density Functional Theory Analysis”
    K. Sakata, T. Homma, H. Nakai, and T. Osaka, Electrochim. Acta, 51, 1000 (2005).
  5. “Density Functional Theory Study on the Oxidation Mechanisms of Aldehydes as Reductants for Electroless Cu Deposition Process”
    T. Shimada, K. Sakata, T. Homma, H. Nakai, and T. Osaka, Electrochim. Acta, 51, 906 (2005).
  6. “Energy Density Analysis of Embedded Cluster Models for an MgO Crystal”
    Y. Kawamura and H. Nakai, Chem. Phys. Lett., 410, 64 (2005).
  7. “Hybrid Approach for Ab Initio Molecular Dynamics Simulation Combining Energy Density Analysis and Short-Time Fourier Transform: Energy Transfer Spectrogram”
    Y. Yamauchi and H. Nakai, J. Chem. Phys., 123, 034101 (2005).
  8. “Principal Component Analysis with Energy Density of Calophyllum Coumarins”
    M. Takeuchi, A. Nakata, and H. Nakai, Chem. Lett., 34, 844 (2005).
  9. “Elimination of Translational and Rotational Motions in Nuclear Orbital Plus Molecular Orbital Theory”
    H. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys., 122, 164101 (2005).
  10. “Short-Time Fourier Transform Analysis of Ab Initio Molecular Dynamics Simulation: Collision Reaction between CN and C4H6
    M. Tamaoki, Y. Yamauchi, and H. Nakai, J. Comput. Chem., 26, 436 (2005).
  11. “Extension of Energy Density Analysis to Treating Chemical Bonds in Molecules”
    H. Nakai and Y. Kikuchi, J. Theor. Comput. Chem., 4, 317 (2005).
  12. “Theoretical Study on Excitation Dynamics of 5-Dibenzosuberene and Its Derivatives”
    H. Nakai , T. Baba, and J. Mol. Struct., 735-736, 211 (2005).
  13. “Practical Performance Assessment of Accompanying Coordinate Expansion Recurrence Relation Algorithm for Computation of Electron Repulsion Integrals”
    M. Katouda, M. Kobayashi, H. Nakai, and S. Nagase, J. Theor. Comput. Chem., 4, 139 (2005).
2004年
  1. “Short-Time Fourier Transform Analysis of Ab Initio Molecular Dynamics Simulation: Collision Reaction between NH4+(NH3)2 and NH3
    Y. Yamauchi, H. Nakai, and Y. Okada, J. Chem. Phys., 121, 11098 (2004).
  2. “A Hybrid Approach Combining Energy Density Analysis with the Interaction Energy Decomposition Method”
    Y. Kawamura and H. Nakai, J. Comput. Chem., 25, 1882 (2004).
  3. “Energy Density Analysis of Cluster Size Dependence of Surface-Molecule Interactions: H2, C2H2, C2H4, and CO Adsorption onto Si(100)-(2×1) Surface”
    H. Nakai, M. Katouda, and Y. Kawamura, J. Chem. Phys., 121, 4893 (2004).
  4. “New Recurrence Relations for the Rapid Evaluation of Electron Repulsion Integrals Based on the Accompanying Coordinate Expansion Formula”
    M. Kobayashi and H. Nakai, J. Chem. Phys., 121, 4050 (2004).
  5. Ab Initio Molecular Orbital Study of the Electron Emission Mechanism of TiCl3 as a Reductant for an Electroless Deposition Process”
    T. Shimada, I. Komatsu, T. Homma, H. Nakai, and T. Osaka, Electrochemistry, 72, 462 (2004).
  6. “New Algorithm for the Rapid Evaluation of Electron Repulsion Integrals: Elementary Basis Algorithm”
    H. Nakai and M. Kobayashi, Chem. Phys. Lett., 388, 50 (2004).
2003年
  1. “Size-Dependent Reaction Cross Section of Protonated Water Clusters H+(H2O)n (n = 2-11) with D2O”
    S. Yamaguchi, S. Kudoh, Y. Okada, T. Orii, K. Takeuchi, T. Ichikawa, and H. Nakai, J. Phys. Chem. A, 107, 10904 (2003).
  2. “Theoretical Study on the Excited States of Psoralen Compounds Bonded to a Thymine Residue”
    A. Nakata, T. Baba, H. Takahashi, and H. Nakai, J. Comput. Chem., 25, 179 (2004).
  3. Ab Initio Molecular Dynamics Study on the Excitation Dynamics of Psoralen Compounds”
    H. Nakai, Y. Yamauchi, A. Nakata, T. Baba, and H. Takahashi, J. Chem. Phys., 119, 4223 (2003).
  4. “Reactions of Protonated Water Clusters H+(H2O)n (n=1-6) with Dimethylsulfoxide in a Guided Ion Beam Apparatus”
    Y. Kawai, S. Yamaguchi, Y. Okada, K. Takeuchi, Y. Yamauchi, S. Ozawa, and H. Nakai, Chem. Phys. Lett., 377, 69 (2003).
  5. “Molecular Orbital Study on the Reaction Process of Dimethylamine Borane as a Reductant for Electroless Deposition”
    T. Homma, A. Tamaki, H. Nakai, and T. Osaka, J. Electroanal. Chem., 559, 131 (2003).
  6. “Energy Density Analysis of Internal Methyl Rotations in Halogenated Toluenes”
    Y. Kawamura and H. Nakai, Chem. Phys. Lett., 368, 673 (2003).
  7. “Many-Body Effects in Nonadiabatic Molecular Theory for Simultaneous Determination of Nuclear and Electronic Wave Functions: Ab Initio NOMO/MBPT and CC Methods”
    H. Nakai and K. Sodeyama, J. Chem. Phys., 118, 1119 (2003).
  8. “Energy Density Analysis (EDA) of Proton Transfer Reactions in Malonaldehyde, Tropolone, and 9-Hydroxyphenalenone”
    H. Nakai and K. Sodeyama, J. Mol. Struct. (THEOCHEM), 637, 27 (2003).
2002年
  1. “Energy Density Analysis (EDA) of Cis, Trans-Enol Isomerization in Malonaldehyde, Tropolone and 9-Hydroxyphenalenone”
    H. Nakai and K. Sodeyama, Chem. Phys. Lett., 365, 203 (2002).
  2. “DFT Calculation Analysis of the Infrared Spectra of Ethylene Adsorbed on Cu(110), Pd(110), and Ag(110)”
    K. Itoh, T. Kiyohara, H. Shinohara, C. Ohe, Y. Kawamura, and H. Nakai, J. Phys. Chem. B, 106, 10714 (2002).
  3. Ab Initio MD Simulation of Collision Reaction between Ammonia Cluster Ion and Ammonia Monomer”
    H. Nakai, Y. Yamauchi, A. Matsuda, Y. Okada, and K. Takeuchi, J. Mol. Struct. (THEOCHEM), 592, 61 (2002).
  4. “Energy Density Analysis with Kohn-Sham Orbitals”
    H. Nakai, Chem. Phys. Lett., 363, 73 (2002).
  5. “The Stability of Ammonia Cluster Ions and Its Relation to Nucleation Rate”
    Y. Okada, T. Orii, K. Takeuchi, H. Nakai, and T. Ichikawa, J. Aerosol Res., Jpn., 17, 30 (2002).
2001年
  1. “π–σ* Hyperconjugation Mechanism on Methyl Rotation in Cationic State of Substituted Toluenes”
    M. Kawai and H. Nakai, Chem. Phys., 273, 191 (2001).
  2. “Non-Born-Oppenheimer Theory for Simultaneous Determination of Vibrational and Electronic Excited States: Ab Initio NO+MO/CIS Theory”
  3. “Simultaneous Determination of Nuclear and Electronic Wave Functions without Born-Oppenheimer Approximation: Ab Initio NO+MO/HF Theory”
    H. Nakai, Int. J. Quant. Chem., 86, 511 (2002).
  4. H. Nakai, K. Sodeyama, and M. Hoshino, Chem. Phys. Lett., 345, 118 (2001).
  5. “Molecular Orbital Study on the Reaction Mechanisms of Electroless Deposition Processes”
    T. Homma, I. Komatsu, A. Tamaki, H. Nakai, and T. Osaka, Electrochim. Acta, 47, 47 (2001).
  6. “π*–σ* Hyperconjugation Mechanism on the Rotational Barrier of the Methyl Group (III): Methyl-Azabenzenes in the Ground, Excited, and Anionic States”
    Y. Kawamura, T. Nagasawa, and H. Nakai, J. Chem. Phys., 114, 8357 (2001).
  7. Ab Initio Molecular Orbital Study of the Oxidation Mechanism of Hypophosphite Ion as a Reductant for an Electroless Deposition Process”
    H. Nakai, T. Homma, I. Komatsu, and T. Osaka, J. Phys. Chem. B, 105, 1701 (2001).
2000年
  1. “Theoretical Study on Ammonia Cluster Ions: Nature of Thermodynamic Magic Number”
    H. Nakai, T. Goto, T. Ichikawa, Y. Okada, T. Orii, and K. Takeuchi, Chem. Phys., 262, 201 (2000).
  2. “π*–σ* Hyperconjugation Mechanism on the Rotational Barrier of the Methyl Group (I): Substituted Toluenes in the Ground, Excited, and Anionic States”
    H. Nakai and M. Kawai, J. Chem. Phys., 113, 2168 (2000).
  3. “Theoretical Study on Ammonia Cluster Ions: Nature of Kinetic Magic Number”
    H. Nakai, T. Goto, Y. Okada, T. Orii, K. Takeuchi, M. Ichihashi, and T. Kondow, J. Chem. Phys., 112, 7409 (2000).
  4. “π*–σ* Hyperconjugation Mechanism on the Rotational Barrier of the Methyl Group (II): 1- and 2-Methylnaphthalenes in the S0, S1, C0, and A1 States”
    H. Nakai and Y. Kawamura, Chem. Phys. Lett., 318, 298 (2000).
1999年
  1. “Nature of the Change in the Rotational Barrier of the Methyl Group due to S0→S1 Excitation”
    H. Nakai and M. Kawai, Chem. Phys. Lett., 307, 272 (1999).
  2. Ab Initio Molecular Orbital Study on the Oxidation Mechanism for Dimethylamine Borane as a Reductant for an Electroless Deposition Process”
    T. Homma, H. Nakai, M. Onishi, and T. Osaka, J. Phys. Chem. B, 103, 1774 (1999).
1998年
  1. “An Extension of Ab Initio Molecular Orbital Theory to Nuclear Motion”
    M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett., 290, 437 (1998).
  2. “A Theoretical Study of the Photochemical Reductive Elimination and Thermal Oxidative Addition of Molecular Hydrogen from and to the Ir-Complex”
    Y. Hayashi, H. Nakai, Y. Tokita, and H. Nakatsuji, Theor. Chem. Acc., 99, 210 (1998).
  3. “Oxidation Mechanism of Propylene on an Ag Surface: Dipped Adcluster Model Study”
    Z. Hu, H. Nakai, and H. Nakatsuji, Surf. Sci., 401, 371 (1998).
  4. “Electronic Structures of MoF6 and MoOF4 in the Ground and Excited States: A SAC-CI and Frozen-Orbital-Analysis Study”
    H. Nakai, H. Morita, P. Tomasello, and H. Nakatsuji, J. Phys. Chem. A, 102, 2033 (1998).
1997年
  1. “Activation of O2 on Cu, Ag, and Au Surfaces for the Epoxidation of Ethylene: Dipped Adcluster Model Study”
    H. Nakatsuji, Z. Hu, H. Nakai, and K. Ikeda, Surf. Sci., 387, 328 (1997).
  2. “Electronic Structures of the Ground and Excited States of Mo(CO)6: SAC-CI Calculation and Frozen Orbital Analysis”
    H. Morita, H. Nakai, H. Hanada, and H. Nakatsuji, Mol. Phys., 92, 523 (1997).
  3. “Mechanism of the Partial Oxidation of Ethylene on an Ag Surface: Dipped Adcluster Model Study”
    H. Nakatsuji, H. Nakai, K. Ikeda, and Y. Yamamoto, Surf. Sci., 384, 315 (1997).
  4. “Theoretical Studies on the Catalytic Activity of Ag Surface for the Oxidation of Olefins”
    H. Nakatsuji, Z. M. Hu, and H. Nakai, Int. J. Quant. Chem., 65, 839 (1997).
  5. Ab Initio Molecular Orbital Model of Scanning Tunneling Microscopy. Benzene and Benzene Adsorbed on a Ag Surface”
    M. Hidaka, T. Fujita, H. Nakai, and H. Nakatsuji, Chem. Phys. Lett., 264, 371 (1997).
  6. “Theoretical Study on the Thermal and Photochemical Isomerization Reactions of Dicyanoacetylene Complex of Platinum Pt(PH3)2(C4N2)”
    H. Nakai, S. Fukada, and H. Nakatsuji, J. Phys. Chem. A, 101, 973 (1997).
1996年
  1. “CO and NO Adsorption on Copper-Containing Zeolite. A Theoretical Ab Initio Study”
    N. U. Zhanpeisov, H. Nakatsuji, M. Hada, H. Nakai, and M. Anpo, Catal. Lett., 42, 173 (1996).
  2. “Frozen-Orbital Analysis of the Excited States of Metal Complexes in High Symmetry: Oh Case”
    H. Nakai, H. Morita, and H. Nakatsuji, J. Phys. Chem., 100, 15753 (1996).
  3. “Theoretical Study of the Ionized Electronic Structure of the Octahedral Complex MoF6
    H. Morita, H. Nakai, P. Tomasello, and H. Nakatsuji, Bull. Chem. Soc. Jpn., 69, 1893 (1996).
  4. Ab Initio Molecular Orbital Model of Scanning Tunneling Microscope”
    T. Fujita, H. Nakai, and H. Nakatsuji, J. Chem. Phys., 104, 2410 (1996).
  5. “Theoretical Study on the Photostimulated Desorption of CO from a Pt Surface”
    H. Nakatsuji, H. Morita, H. Nakai, Y. Murata, and K. Fukutani, J. Chem. Phys., 104, 714 (1996).
1995年
  1. “Theoretical Study on the Electronic Spectrum of TcO4
    J. Hasegawa, K. Toyota, M. Hada, H. Nakai, and H. Nakatsuji, Theor. Chem. Acc., 92, 351 (1995).
  2. “Electronic Mechanism of the Surface Enhanced Raman Scattering”
    H. Nakai and H. Nakatsuji, J. Chem. Phys., 103, 2286 (1995).
  3. “Theoretical Study on the Photochemical Decomposition Reaction of Permanganate Ion, MnO4
    H. Nakai, Y. Ohmori, and H. Nakatsuji, J. Phys. Chem., 99, 8550 (1995).
1994年
  1. “Mechanism of Photochemical Reaction of Permanganate Ion”
    H. Nakai and H. Nakatsuji, J. Mol. Struct. (THEOCHEM), 311, 141 (1994).
  2. “Theoretical study on the ground and excited states of the chromate anion CrO42-
    S. Jitsuhiro, H. Nakai, M. Hada, and H. Nakatsuji, J. Chem. Phys., 101, 1029 (1994).
1993年
  1. “Dipped Adcluster Model and SAC-CI Method Applied to Harpooning, Chemiluminescence and Electron Emission in Halogen Chemisorption on Alkali Metal Surface”
    H. Nakatsuji, R. Kuwano, H. Morita, and H. Nakai, J. Mol. Catal., 82, 211 (1993).
  2. “Theoretical Study on the Methane Activation Reactions by Pt, Pt+, and Pt Atoms”
    M. Hada, H. Nakatsuji, H. Nakai, S. Gyobu, and S. Miki, J. Mol. Struct. (THEOCHEM), 281, 207 (1993).
  3. “Dipped Adcluster Model Study for Molecular and Dissociative Chemisorption of O2 on Ag Surface”
    H. Nakatsuji and H. Nakai, J. Chem. Phys., 98, 2423 (1993).
1992年
  1. “Potential Energy Curves of Dioxygen Anion Species: O2 and O22-
    H. Nakatsuji and H. Nakai, Chem. Phys. Lett., 197, 339 (1992).
  2. “Dipped Adcluster Model Study for the End-on Chemisorption of O2 on an Ag Surface”
    H. Nakatsuji and H. Nakai, Can. J. Chem., 70, 404 (1992).
1991年
  1. “Theoretical Study on the Ground and Excited States of MnO4
    H. Nakai, Y. Ohmori, and H. Nakatsuji, J. Chem. Phys., 95, 8287 (1991).
  2. “Dipped Adcluster Model for Chemisorptions and Catalytic Reactions on a Metal Surface: Image Force Correction and Applicationsto Pd-O2 Adclusters”
    H. Nakatsuji, H. Nakai, and Y. Fukunishi, J. Chem. Phys., 95, 640 (1991).
1990年
  1. “Theoretical Study on Molecular and Dissociative Chemisorptions of an O2 Molecule on an Ag Surface: Dipped Adcluster Model Combined with Symmetry-Adapted Cluster-Configuration Interaction Method”
    H. Nakatsuji and H. Nakai, Chem. Phys. Lett., 174, 283 (1990).
日本語論文
  1. “Theoretical Study on Excess-Electron Transfer in DNA Based on the Marcus Theory”
    Y. Takada, M. Okoshi, M. Hoshino, A. Ishikawa, M. Isikawa, and H. Nakai, J. Comput. Chem. Jpn., 13, 242 (2014). (in Japanese)
  2. “Implementation of Divide-and-Conquer (DC) Electronic Structure Code to GAMESS Program Package”
    M. Kobayashi, T. Akama, and H. Nakai, J. Comput. Chem. Jpn., 8 (1), 1 (2009). (in Japanese)
  3. “Periodic-Boundary-Condition Calculation Using Heyd-Scuseria-Ernzerhof Screened Coulomb Hybrid Functional: Electronic Structure of Anatase and Rutile TiO2
    H. Nakai, J. Heyd, and G.E. Scuseria, J. Comput. Chem. Jpn., 5, 7 (2006). (in Japanese)