Research Activity in Nakai Group

Target	Algorithm	Theory	Program		
Nuclear Wavefunction	NOMO	NOMO-HF NOMO-MBPT			
Ground State	DC	DC-HF DC-DFT DC-DFTB	GÅMESS		
Electron Correlation	DC	DC-MP2 DC-CCSD DC-CCSD(T)			
Excited State	DC	DC-TDDFT DC-CCLR DC-TDDFTB	DCDFTBMD		
Ground-State Dynamics	MD	DC-DFTB-MD DC-DFTB-MetaD			
Non-adiabatic Dynamics	FSSH	DC-TDDFTB-FSSH DC-SF-TDDF7B-FSSH	^r RA@ET		
Relativity	LUT	LUT-IOTC LUT-IOTC/LUT-IOTC	RELATIVISTIC AND QUANTUM ELECTRONIC THEORY		
Machine Learning	ML	ML-EC ML-KEDF	> ??		

Programing in Nakai Group

 Mark seems to like LUT more than the other relativistic methods.

\$CONTRL group

RELWFN

Selects all-electron scalar relativity treatment. See the \$RELWFN input group for more information, including nuclear derivative availability.
NONE use the basic Schrodinger equation (default) **LUT-IOTC local unitary transformation modification**

- of IOTC, due to H.Nakai, J.Seino, Y.Nakajima. This is the fastest and most numerically reliable scalar relativity method, so it is preferred over RESC, DK, or IOTC.
- = IOTC infinite-order two-component method of ...
- = DK Douglas-Kroll transformation, available at ...
- = RESC relativistic elimination of small component, ...
- = NESC normalised elimination of small component, ...

Function of **DCDFTBMD** Program

Function		
Energy, Gradient, Hessian	Closed-shell system: DFTB1/2/3, Orbital resolved SCC Open-shell system: Spin-polarized DFTB	
Linear-scaling method	Divide and conquer (DC)	
Charge-charge interaction	Ewald, FMM, Spline interpolation	
SCC corrections	Chemical potential equalization, DFTB+U, Weighted Mulliken scheme, On-site corrected DFTB, Long-range correction (LC-DFTB2), Finite-temperature calculation, Point charge for external field effect, Static electric field for external field effect Implicit solvation model (GBSA/ALPB)	
SCC convergence	Broyden, Simple mixing, Anderson, DIIS	
Excited-state calculation	Time-dependent DFTB, Spin-flip time-dependent DFTB	
Dispersion correction	Slater-Kirkwood, Lennard-Jones, DFT-D2/D3/D4, DFT-ulg, dDMC, D3H4, D3H5, D3X, DFT-TS, MBD	
Property evaluation	Mulliken charge, CM3/CM5 charge, Mayer bond order, Dipole moment, Static polarizability, Atom resolved energy	

Function of **DCDFTBMD** Program (cnt'd)

Function Local geometry BFGS, Steepest descent, Conjugate gradient, Quick-min, FIRE optimization **Global optimization** Monte Carlo minimization (Basin hopping) Reaction path finding Nudged elastic band (NEB) Transition state search Dimer method Harmonic frequency, IR intensity, Raman activity, Vibrational analysis Thermochemical quantities NVE, NVT, NPT MD ensemble Velocity scaling, Nose-Hoover chain, Berendsen, MD thermostat Andersen RATTLE, Soft potential, Lagrange interpolation initial MD option guess charge, Least square fitting initial guess charge Metadynamics (MetaD), Well-tempered metaD, MD sampling Multiple-walkers metaD, Replica exchange MD, Parallel-tempering metaD Non-adiabatic MD Fewest switches trajectory surface hopping (FSSH) Quantum dynamics Path Integral MD (PIMD), Ring Polymer MD (RPMD)

Release of **DCDFTBMD** Program

Release as academic-free software

- http://www.chem.waseda.ac.jp/dcdftbmd
- November 1st, 2018

Worldwide users (2020.10.10)

Y. Nishimura, H. Nakai, *J. Comput. Chem.*, **40**, 1538 (2019).
Y. Nishimura, T. Yoshikawa, H. Nakai, *J. Comput. Chem. Jpn.*, **17**, A21 (2018).

Large-Scale Reaction Simulation

- Bond formation/cleavage -
- Electron transfer
- Dynamical behavior

Quantum Mechanics (QM)

6

Massive-Parallel DC-DFTB Code

- 1) Assign each fragment to each node
- 2) Determine localization region and save its information
- 3) Calculate E^{rep}
- 4) Calculate H_0^a & S^a
- 5) Calculate γ^a & Γ^a

6) Calculate E_{DFTB}
7) Construct Fock matrix, F^a
8) Diagonalize F^a

9) Construct subsystem's density matrix, D^a

10) Calculate subsystem's charge, q^a

11) Calculate total charge, q

H. Nishizawa, Y. Nishimura, K. Kobayashi, S. Irle, H. Nakai, *J. Comput. Chem.*, **37**, 1983 (2016).

Applications of **DCDFTBMD** Program

Excited-State Calculation of PYP

- DC-type Excited-State Calculations
 - Methods: DC-TDDFTB, DC-TDDFT, DC-SACCI
 - Model: Whole PYP

Method	Excitation Energy [eV]	(diff.)	Wall Time [sec]
DC-TDDFTB	2.17	(-0.61)	1.25
DC-TDLCDFTB	2.80	(0.02)	2.04
DC-TDBLYP	2.33	(-0.45)	663.82
DC-TDB3LYP	3.12	(0.35)	776.40
DC-TDLCBLYP	2.85	(0.07)	1017.04
DC-SACCI	2.89	(0.11)	2484.00
Exptl.	2.78		

T. Yoshikawa, N. Komoto, j. Ono, Y. Nishimura, H. Nakai, *J. Chem. Theory Comput.*, **15**, 1719 (2019).

Perovskite Solar Cell Materials

Photoexcited-State Dynamics

• Surface hopping simulations probed charge separation processes

H. Uratani, H. Nakai, J. Phys. Chem. Lett. 11, 4448 (2020).

Potential energy surfaces

• Separation of hole (+, red) and electron (-, blue) t = 0 fs t = 300 fs

RAQET Program

Efficient 1c & 2c Rel QC Program D A A A CONTRACT

Functions	Details		
HF	R, U, RO, KR, KU, KRO, G (disk, direct)		
MP2	R, U, RO, KR, KU, KRO, G (disk, direct) RELATIVISTIC AND QUANTUM ELECTRONIC THEOR		
DFT	R, U, RO, KR, KU, KRO, G (collinear, non-collinear, PCC)		
Correlation	MPn, <mark>CI</mark> , CC		
Excited State	EOM-CC, TDDFT(R, U, G)		
Hamiltonian	NR, DKHn/NR, IODKH/NR(SF/SD, LUT), IODKH/IODKH (SF/SD, LUT)		
Initial Guess	Hcore, Extended Hückel, Atomic density, Small basis, MO read, DM readGradient		
Hamil. Gradient	NR, IODKH/NR(SF/SD, LUT), IODKH/IODKH (SF/SD, LUT)		
HF Gradient	R, U, RO, KR, KU, KRO, G		
MP2 Gradient	R, U, RO, KR, KU, KRO, G		
Basis Function	Cartesian, Spherical harmonics		
1E Integral	Overlap, Kinetic, V, pVp (derivative)		
2E Integral	ERI, pVp, ppVpp (derivative), FMM		
Integral Algorithm	ACE-RR, ACE-TRR (GC/SC), Gauss-Rys, PH+MD (SMASH)		
Core Potential	MCP, AIMP, FCP, FCP-MP		
SCF Conv.	C1-DIIS, C2-DIIS, E-DIIS, SO-SCF, Level shifting, Fock extrapolation, Damping, FON		
Linear Scaling	DC-SCF, DC-correlation		
Optimization	BFGS, RFO, Cartesian coordinate, Redundant coordinate, G-DIIS, Hessian		
Others	Expectation values, Electric/Magnetic properties, Solvent effect		

M. Hayami, J. Seino, Y. Nakajima, M. Nakano, Y. Ikabata, T. Yoshikawa, T. Oyama, K. Hiraga, S. Hirata, H. Nakai, *J. Comput. Chem.*, 39, 2333 (2018).

Feature of RAQET Program

M. Hayami, J. Seino, H. Nakai, *J. Comput. Chem.*, 35, 1517 (2014). J. Seino, H. Nakai, *J. Chem. Phys.*, 136, 244102 (2012).

Download of RAQET Program

- Download at <u>www.chem.waseda.ac.jp/raqet/</u>
 - Registration (1 License for 1 Group)

RAQET

About Us Download Documentation Publication

Relativistic And Quantum Electronic Theory

Download

This page gives information on the distribution of the **RAQET** program. The program for a single CPU calculation will be distributed as a precompiled executable from May 1, 2019. The executable runs in Linux operating systems for x86_64 (64 bit) architecture. The license is free but only academic use is permitted. We permit only one license per research group. Please register your name, e-mail address, and so on from this website in order to get a download link. You will be asked to agree to the license during the registration. After completing approval, you will receive an e-mail containing a password for download within several days. Once you get the password you can download a package file containing the executable.

LANGUAGE SWITCHER

■ English (United States) ● 日本語

NEWS

 Academic version of Relativistic And Quantum Electronic Theory (RAQET) software has been released since May 1st, 2019
 Our website opened.

JCC, 39, 2333 (2018).

