Incorporation of nuclear quantum effects to ab initio molecular dynamics approach

Tetsuya Taketsugu, Yusuke Ootani, Akira Nakayama, and Takeshi Noro

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan E-mail: take@sci.hokudai.ac.jp

We developed an AIMD code for excited-state reactions, which takes into account nonadiabatic transitions between adiabatic electronic states explicitly by the fewest switches algorithm [1]. The surface-hopping AIMD method has been applied to several dissociative recombination (DR) reactions, $HCNH^+ + e^-[2], H_3O^+ + e^-[3], and HD_2O^+ + e^-[4], as well as a photoisomerization reaction of azobenzene [5], to examine the tendency in the branching ratio of the products and to give insight to dynamical processes accompanying non-adiabatic transitions. Very recently, we also implemented the semiclassical tunneling method [6] to our AIMD code, and performed test calculations for the tunneling splitting in the umbrella inversion of ammonia and the intramolecular hydrogen transfer in malonaldehyde [7]. In the application to malonaldehyde, effects of multi-dimensionality were examined by assigning quantum zero-point energies only to significant vibrational modes and changing the amount of energy given to bath modes. In this talk, our extension of the AIMD approach to excited-state reactions and tunneling reactions is introduced and discussed.$

References

[1] J. C. Tully, J. Chem. Phys. 93, 1061 (1990).

- [2] T. Taketsugu, A. Tajima, K. Ishii, and T. Hirano, Astrophys. J. 608, 323 (2004).
- [3] M. Kayanuma, T. Taketsugu, and K. Ishii, Chem. Phys. Lett. 418, 511(2006).
- [4] M. Kayanuma, T. Taketsugu, and K. Ishii, Theo. Chem. Acc. 120, 191 (2008).
- [5] Y. Ootani, K. Satoh, A. Nakayama, T. Noro, and T. Taketsugu, J. Chem. Phys. 131, 194306 (2009).
- [6] N. Makri and W. H. Miller, J. Chem. Phys. 91, 4026 (1989).
- [7] Y. Ootani and T. Taketsugu, submitted.