Giant enhancement of the second hyperpolarizabilities of open-shell singlet molecular systems by an external electric field and donor-acceptor substitution

<u>Masayoshi Nakano</u>,¹ Takuya Minami,¹ Kyohei Yoneda,¹ Shabbir Muhammad,¹ Ryohei Kishi,¹ Yasuteru Shigeta,¹ Takashi Kubo,² Léa Rougier,³ Benoît Champagne,³ Kenji Kamada,⁴ Koji Ohta⁴

¹Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

²Department of Chemistry, Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, Japan

³Laboratoire de Chimie Théorique (LCT), Facultés Universitaires Notre-Dame de la Paix (FUNDP) Rue de Bruxelles, 61, B-5000 Namur, Belgium

⁴Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan

We have theoretically found an external field (*F*) induced giant enhancement of the second hyperpolarizability γ of open-shell singlet systems with intermediate diradical characters [1]. As realistic examples, we examine the field effects on the γ of polyaromatic diradicaloid having intermediate diradical character, *s*-indaceno[1,2,3-*cd*;5,6,7-*c*'*d*']diphenalene (IDPL), in comparison to a closed-shell analogue of similar size composed of two pyrene moieties (PY2) by carrying out spin-unrestricted density functional theory, LC-UBLYP, calculations (see Figure 1) [2].

For IDPL, the field-induced enhancement ratio is estimated to reach 4 orders of magnitude for an electric field of 0.0077 a.u., whereas it is less than a factor of 2 for PY2. Moreover, an enhancement is also observed by substituting both-end phenalenyl rings of IDPL by donor $(NH_2)/acceptor$ (NO₂) groups but this enhancement is limited to about two orders of magnitude. These enhancements are associated with a reduction of the diradical character - and therefore an improved thermal stability as well as with the appearance of substantial Type-I contributions to y.

Figure 1. Static electric field (F) effect on γ [a.u.] of IDPL and PY2 calculated by the LC-UBLYP/6-31G* method.

[1] (a) M. Nakano et al. *Phys. Rev. Lett.* **99**, 033001 (2007); *J. Chem. Phys.* **133**, 154302 (2010). (b) K. Kamada et al. *J. Phys. Chem. Lett.* **1**, 937 (2010) [2] M. Nakano et al. *J. Phys. Chem. Lett.* **2**, 1094 (2011).