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1.1 General introduction 

 

Organic semiconductors have received considerable attention for fabricating various electric 

devices, such as transistors [1–4], solar cells [5–8], light-emitting diodes [9,10], lasers [11,12], 

and thermoelectric elements [13,14]. Electric devices are a key factor in advancing society. 

Currently, inorganic materials such as Si are used for fabricating such electric devices. However, 

the manufacturing processes for inorganic semiconductors, such as film formation by dry 

processes, require high vacuum and high temperatures. These processes must be conducted on a 

massive scale for manufacturing inorganic devices, resulting in significant energy and resource 

consumption. In the future, the demand for electric devices will increase, reducing the barriers 

around sharing information and producing energy. Using organic materials has some advantages 

over using inorganic semiconductors. Organic devices are less expensive, and because they are 

soluble, fabricating large-area devices is much easier as a wet process can be used. Wet processes 

are spin coating [15–17], inkjet printing [18–20], etc. [21–23]. These technologies are 

environmentally friendly and consume less energy. In addition, these techniques can be used to 

fabricate light, thin and flexible devices that are expected to be applicable in many situations.  

    Recently, organic EL have been used for smartphone displays. However, other organic 

devices have not been put into practical use because the electrical characteristics have not reached 

sufficient levels yet. Advancing organic transistors to the point where organic EL flexible displays 

are practical is of great interest. Investigations in this field have been directed toward the synthesis 

of semiconductors with new structures [24–27], the optimization of solid-state materials [28–30] 

and the modification of process engineering techniques [31–33]. Thermal annealing is the most 

well-known method for increasing the crystallinity of an organic semiconductor film. In a 

crystalline state, organic semiconductors are aligned and ordered, which results in good overlap 

of the π electrons. This overlap increases the mobility of the carriers, allowing them to move 

quickly in the crystal.  

A theoretical understanding of organic semiconductors is important for developing this field. 

Recently, the importance of theory-guided material design, such as using quantum chemical 

calculation, has become obvious [34–36]. T. Yamamoto and K. Takimiya predicted promising 

new organic semiconductors using molecular orbital (MO) calculations before synthesis [37]. Z. 

Bao et al. also used computational screening before synthesis and achieved a very high mobility 

(16 cm2 V−1 s−1) [38]. Thus, a strong theoretical understanding will greatly facilitate the design of 
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organic semiconductors with improved performance. However, in theoretical understanding, the 

effects of carrier species in organic devices have not been elucidated sufficiently. There are two 

types of carriers, a polaron and a bipolaron in a nondegenerate conjugated polymer, which is 

explained in detail in Section 1.3. A polaron has +e or −e, and a bipolaron has +2e or −2e. It has 

been reported that a bipolaron affects the electrical properties of organic devices [39–41]. 

However, the carrier species generated in these devices are identified using ESR or the effect was 

explained by a simulation. They cannot dismiss the effect of a polaron pair. Therefore, elucidating 

the fundamental mechanism of carrier species, such as electron-lattice interactions, charge 

transport and carrier generation, is of great importance. 

 

1.2 Organic transistors 

 

    Organic transistors, often called OTFTs or OFETs are promising organic devices. Transistors 

can amplify or switch an electric current. These devices were used as a tool for evaluating the 

charge transport properties of organic semiconductors early in the development of this field, and 

the mobility of the first OTFT was only 10−5 cm2 V−1 s−1 [42]. In these days, OTFTs were intended 

for use in flexible devices such as displays, ID tags and banknotes [43–46]. Today, their mobilities 

are approaching those of polycrystalline silicon transistors (>10 cm2 V−1 s−1). In particular, single 

crystal semiconductors show high mobilities; for example, rubrene transistors achieved a mobility 

of 18 cm2 V−1 s−1 [47]. Polymer semiconductors have attracted great research interest because of 

their facile solution processing and good mechanical properties. Beng S. Ong et al. reported a 

high mobility in the saturation regime (up to 10.5 cm2 V−1 s−1) with N-alkyl diketopyrrolopyrrole-

dithienylthieno[3,2-b]thiophene (DPP-DTT), which is a polymer semiconductor [48]. Thus, 

polymer semiconductors with a high mobility have already been synthesized. 

    The configuration of OFETs, which are called bottom gate and bottom contact devices, is 

shown in Figure 1.1. These devices have three electrodes; a gate, a source and a drain. Organic 

semiconductors are used as an active layer. Highly doped silicon crystals are typically used as the 

gate electrode with silicon-oxide layers as insulators. The ID, which flows between the source and 

the drain electrodes, can be modified by tuning not only the VD but also the VG. When the VG is 

applied, an electric field is generated, and the electric charge accumulates in the active layer. 

During charge accumulation, the organic semiconductors are doped, and the carriers are generated. 

These carriers are transported as the ID. Therefore, the value of ID depends on the charge 



7 

 

concentration. 

    For heavily doped organic semiconductors, electrolytes can be used as an insulator [49,50]. 

They have a high capacitance, which leads to a high ID and a low operating voltage because they 

can achieve high charge accumulation. C. D. Frisbie et al. used ionic liquids as the insulator [51] 

because they offer additional advantages. They have wide potential windows that facilitate high 

charge density (up to 1021 cm−3) [52,53]. There are many kinds of ionic liquids, which allows their 

role in doping to be assessed. Therefore, ILGTs are more attractive for practical applications. The 

weak point of ILGTs is their slow response speed, which can be a few kHz because ions in ionic 

liquids move slowly under an applied voltage. Therefore, it is difficult to use ILGTs as logic 

circuits such as CPUs. However, ILGTs are fast enough to be used in illumination as displays and 

biosensor because human biosignals are slower than 1 kHz. 

There are two ways of doping ILGTs: electrostatic and electrochemical doping, as shown in 

Figure 1.2 [54,55]. In electrostatic doping, cations and anions are alternatively superimposed to 

form an EDL by applying a VG at the interface between an ionic liquid and an active layer, and 

this results in a doped organic semiconductor. In electrochemical doping, the anions of ionic 

liquids at the interface penetrate into an organic semiconductor film, and the active layer is doped. 

Importantly, electrochemical doping can achieve a high carrier density and heavy doping not only 

at the interface but also in the bulk region of the active layer. To investigate a bipolaron, the active 

layer must be heavily doped, and ILGTs are useful for researching doping mechanisms and carrier 

generation in organic semiconductors because the carrier concentration can be evaluated by 

electrochemical measurements [52,56–60]. 

 

1.3 Carrier species of conjugated polymers 

 

Carrier species are important for understanding electrical properties. In conjugated polymers 

with a degenerate ground state and alternating C−C and C=C bonds, such as trans-polyacetylene, 

charged solitons serve as the carriers [61]. Conjugated polymers with a nondegenerate ground 

state have two types of carriers: polarons and bipolarons [62–64]. A polaron and a bipolaron in 

polythiophene are shown in Figure 1.3. Most conjugated polymers are nondegenerate as none of 

their ground state structures are identical. A polaron has +e or −e and a spin of 1/2. The charge is 

localized over several rings of the polymer, which causes a change in geometry. For example, 

structural changes from benzenoid to quinoid moieties can occur, as shown in Figure 1.4. When 
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another electron is removed from or appended to the conjugated polymer, two polarons are or a 

bipolaron which has +2e or −2e and no spin, is formed. At a low doping level, a polaron was 

generated, and a bipolaron was generated at a high doping level [63,65]. These carrier species 

affect the electrical, magnetic and optical properties of the polymer [56,58,66–69].  

Carrier species can be identified using optical absorption spectroscopy, vibrational 

spectroscopy and ESR spectroscopy. However, carrier identification is difficult in the early stage 

of studying these physical properties. When a polaron or a bipolaron is formed, two electronic 

levels (+ω0 and −ω0 for a polaron and +ω0’ and −ω0’ for a bipolaron) are formed. No electron is 

in the −ω0’ level. The model developed by Fesser, Bishop and Campbell [70] shows that a polaron 

has three transition, and a bipolaron has two transition, as shown in Figure 1.5. A polaron has two 

allowed transitions: the P1 transition from the valence band to the −ω0 level and the P2 transition 

from the −ω0 level to the +ω0 level. The P3 transitions from the −ω0 level to a conduction band or 

from the valence band to the +ω0 level are forbidden. A Bipolaron has one allowed transition, 

BP1, which is from the valence band to the −ω0’ level. The BP3 transition from the valence band 

to the +ω0’ level is forbidden. In addition, a polaron show ESR signals because it has a spin of 

1/2. As experimental results, two absorption bands were observed in polythiophene [71], and the 

ESR signals of a doped polythiophene were smaller than those expected from an injected charge 

[72]. The ESR result indicated that spinless carriers, bipolarons, were generated. Therefore, A. J. 

Heeger et al. suggested that bipolarons were generated mainly in doped polythiophene, and 

polarons were generated only at a so low doping level [73]. This assignment was widely applied 

to other conjugated polymers. Therefore, for a long time, bipolarons were considered the major 

species generated by doping.  

This assignment, however, was not correct [74]. Fesser’s model predicts that the intense of 

the allowed transition, BP1 is much stronger than that of the forbitten transition, BP3. Two 

absorption bands observed in a doped polythiophene should be assigned to polarons in this respect. 

In addition, other studies of doped oligomers showed that the two bands should be attributed to 

polarons [75,76]. Shimoi et al. also showed that the two bands should be attributed to polarons 

and one band could be attributed to bipolarons using calculations in the presence of electron-

electron interactions [77]. In addition, it was suggested that a pair of polarons gives rise to no 

ESR signal [74]. Therefore, two absorption bands should be assigned to polarons, and one 

absorption band should be attributed to bipolarons. Thus, it was difficult to correctly identify the 

carrier species of doped conjugated polymers. Currently, carrier species can be correctly identified. 
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Therefore, not only major carriers but also minor carriers (bipolarons) should be investigated to 

fully understand the physical properties of organic semiconductors. 

In situ measurements of carrier generation in an operated transistor are also difficult. Carriers 

are generated in the channel region of transistors, and this region in an operated transistor is too 

small to use optical absorption spectroscopy. ESR is often used to investigate operated transistors. 

However, a spinless carrier such as a bipolaron cannot be observed directly using ESR 

mesurement. Vibrational spectroscopy is also a powerful tool for studying the structures of 

carriers. Band positions shift due to changes in bond length, the force constant and localization of 

charges. When carriers are generated, infrared active vibrational modes are strongly observed, 

and they were explained on the basis of the effective conjugation theory [78]. However, using IR 

spectroscopy to elucidate the structure of the device is difficult because glass does not transmit 

some wavelengths of infrared light. Raman spectroscopy can be used to observe the polarons and 

bipolarons generated in the microscale area through a glass barrier. This method is useful for 

investigating carrier generation in organic devices such as ILGTs. 

 

1.4 Outline of thesis 

 

The outline of this thesis is as follows. In Chapter 2, I discuss the ILGTs fabricated with 

PBTTT-C14 and [BMIM][TFSI]. Raman and optical absorption spectra of a PBTTT-C14 film 

doped with FeCl3 were acquired, and Raman spectra of positive polarons and bipolarons in 

PBTTT-C14 were identified. The generation of polarons and bipolarons in the ILGT fabricated 

with PBTTT-C14 was observed using Raman spectroscopy. Conductivities, doping levels and 

mobilities of this ILGT were determined using electrochemical measurements. The relationship 

between carrier species and these electric properties was investigated. I show high bipolaron 

mobilities in PBTTT-C14 using of the ILGT configuration. In Chapter 3, I discuss the ILGTs 

fabricated with unannealed and annealed PBTTT-C16 films. The crystalline contents of PBTTT-

C16 films were evaluated using Raman spectroscopy. Raman and optical absorption spectra of a 

PBTTT-C16 film doped with FeCl3 were acquired, and Raman spectra of positive polarons and 

bipolarons of PBTTT-C16 were identified. I determined the doping levels and the mobilities of 

polarons and bipolarons using Raman spectroscopy and electrochemical measurements on the 

ILGTs. The bipolaron mobilities of unannealed and annealed PBTTT-C16 were high. I showed 

the effect of high crystalline contents on carrier generation and mobilities. In Chapter 4, I discuss 
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the investigation of the relationship between carrier generation and the size of the anions in ionic 

liquids. I measured ILGTs fabricated with [EMIM][TFSI] and [EMIM][FAP] using Raman 

spectroscopy and electrochemical measurements. I showed that large anions impeded bipolaron 

formation in ILGTs. In Chapter 5, I discuss the conclusions of the thesis. 
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Figure 1.1. The device structure of the bottom contact/bottom gate 
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Figure1.2. Electrostatic (left) and electrochemical (right) doping 
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Figure 1.3. The schematic structures of a polaron and a bipolaron in polythiophene 
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Figure 1.4. The benzenoid and quinoid structures 
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Figure 1.5. Schematic electronic structure of a neutral polymer, a positive polaron and a positive 

bipolaron 
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2.1 Introduction 

 

    In this chapter, I investigate an ILGT fabricated with PBTTT-C14 as the active layer and 

[BMIM][TFSI] as the ionic liquid using Raman and electrochemical measurements. The chemical 

structures of PBTTT-C14 and [BMIM][TFSI] are shown in Figure 2.1. 

    PBTTT is a conjugated polymer that acts as a p-type semiconductor with positive polarons 

and bipolarons as carriers upon oxidation [1–8]. It is widely used for organic devices such as a 

solar cell, a spintronic device, a thermoelectric device and a transistor [9–11]. This compound has 

two thiophene rings and one thienothiophene ring as a repeating unit. In a design of organic 

conjugated polymer, HOMO level is an important factor for improvement in oxidative stability. 

PBTTT has a thienothiophene unit that has a larger resonance stabilization energy than a single 

thiophene unit. It reduces delocalization of electrons into the backbone. This molecular design 

resulted in a lower HOMO level (5.1 eV) [12] than that of with P3HT (4.8 eV) [13]. In addition, 

a crystalline domain is also important because crystalline domains allow short intermolecular π-

π distance, which allows high mobility. Thienothiophene ring is a linear conjugated comonomer 

unit and promotes a higher degree of order and generating large crystalline domains. A large 

positive carrier mobility (1 cm2 s−1 V−1) can thus be achieved in an OTFT [3]. PBTTT molecules 

are aligned in an edge-on orientation, allowing current to easily flow in the lateral direction. The 

source and drain electrodes are patterned laterally in most transistors as shown in Figure 1.1, and 

the ID flows in this direction. Therefore, PBTTT is suitable for use as an active layer in transistors. 

Raman spectroscopy is a powerful tool for detecting carrier species [14–17]. Carrier 

generation in the channel region of ILGTs can be detected in situ using this technique. The ID and 

IG can be determined using electrical measurements. Electrical conductivity can be calculated 

from ID and VD, and resulted in a higher degree of order, generating crystalline domains, and the 

injected charge density can be calculated from the integral of IG. The mobility of each carrier and 

the critical doping level of carrier generation can be determined by comparison of the Raman 

spectra. 

The Raman spectra of the polarons and bipolarons of PBTTT-C14 have not been elucidated. 

Therefore, the carrier species should be identified using optical absorption spectroscopy. Polarons 

have two intense absorption bands, and bipolarons have one intense absorption band based on 

theoretical models under the one-electron approximation [18,19]. A PBTTT-C14 film doped with 

FeCl3 was evaluated with both optical absorption spectroscopy and Raman spectroscopy to 
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identify the Raman bands of the polarons and bipolarons. I obtain the relation between the carrier 

generation in the ILGT and the mobilities, conductivities and doping levels based on Raman 

spectroscopy and electrochemical measurements. 

 

2.2 Experimental methods 

 

2.2.1 Materials and devices 

 

    PBTTT-C14 was purchased from Lumtec (Hsin-Chu, Taiwan). [BMIM][TFSI], FeCl3 and 

1,2-dichlorobenzene were purchased from Kanto Chemical. EAGLE XG® glass substrate 

(20×20×0.7 mm) was purchased from Corning. A schematic of the structure of the ILGT devices 

used in this work is shown in Figure 2.2. Ni (5 nm) and Au (45 nm) were deposited using a shadow 

mask on the glass substrate as the source and drain electrodes. The width and length of the channel 

region were 1 mm and 50 μm, respectively. A PBTTT-C14 film was prepared from a solution of 

1,2-dichlorobenze (15 mg/mL, at 90 °C) using a spin-coating method. The film was not annealed. 

The thickness of the film was measured to be 60 nm using a Bruker AXS Dektak XT surface 

profilometer. [BMIM][TFSI] was used as the gate dielectric. The thickness of the dielectric layer 

was 200 μm using a Naflon® (polytetrafluoroethylene) spacer purchased from NICHIAS. A glass 

substrate coated with ITO was purchased from GEOMATEC. The sheet resistivity was 30 Ω sq−1. 

The ITO-coated glass substrate was used as the gate electrode. 

 

2.2.2 FeCl3 vapor doping 

 

    A PBTTT-C14 film was doped by exposure to FeCl3 vapor at reduced pressure using a cell 

as shown in Figure 2.3. The PBTTT-C14 film was formed on a BaF2 window of the cell by spin 

coating. Solid FeCl3 powder was placed in the cell. The Vis/NIR absorption spectra were obtained 

using a JASCO V-570 UV/Vis/NIR spectrometer. Raman spectra were obtained using a Renishaw 

InVia Raman microscope with a Leica N PLAN L 50× objective (working distance, 8.2 mm; 

numerical aperture, 0.50) with an excitation wavelength of 785 nm. The spatial resolution was 

2.8 cm−1. 
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2.2.3 Raman and electrochemical measurements of an ILGT 

 

    Raman and electrochemical measurements were performed on the same ILGT (Figure 2.4). 

Raman measurements were performed under the conditions described in Section 2.2.2. VD was 

applied, and ID was measured using a KEITHLEY 6487 picoammeter/voltage source. VG was 

applied, and IG was measured using an ADVANTEST R6243DC current monitor/voltage source. 

VD was fixed at −0.01 V. The dependence of the Raman spectrum on VG was measured from VG = 

0 to −2.0 V every −0.1 V, and measurements were taken 30 s after the change in the VG. The 

change in IG as a function of time (Figure 2.5) was integrated over 200 s starting from the change 

in VG; the current after 200 s was considered IL. ID was also measured after 200 s. Thus, the 

stepwise injection charge was obtained. The injected charge (Q) at VG was the sum of the stepwise 

injected charges. The charge density (n) can be evaluated from the following equation: 

 

𝑛 =
1

𝑒𝑆𝑑
∫(𝐼G − 𝐼L)𝑑𝑡 =

𝑄

𝑒𝑆𝑑
(2.1) 

 

where e is the elementary charge, and S and d are the area and the thickness of the PBTTT-C14 

film, respectively. Based on the XRD data, the lattice parameters of the unit cell of a PBTTT-C14 

triclinic crystal are a = 2.15 nm, b = 0.54 nm, c = 1.35 nm, α = 137°, β = 86°, γ = 89°, and Z = 1 

[20]. The number of repeating units per unit volume N (9.43×1020 cm−3) was calculated from these 

values. The number of π electrons in one unit of PBTTT-C14 was 14. The doping level per π 

electron x (%/π electron) was calculated by the following equation: 

 

𝑥 =
𝑛

14𝑁
× 100 (2.2) 

 

The average electrical conductivity (σ) of PBTTT-C14 at each VG value was calculated from ID, 

VD = −0.01 V, the width of the channel (W = 1.0 mm), the length of the channel (L = 5.0×10 μm) 

and the thickness of the film (d = 5.0×10 nm). The mobility (μ) was obtained using the following 

equation:  
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𝜇 =
𝜎

𝑝𝑞
(2.3) 

 

The carrier density (p) is n for polarons and n/2 for bipolarons, and the charge of a carrier (q) is 

+e for polarons and +2e for bipolarons. 

 

2.3 Results and discussion 

 

2.3.1 Vis-NIR absorption and Raman spectra of a PBTTT-C14 film doped with FeCl3 

 

    Figure 2.6 shows changes in the optical spectra of a PBTTT-C14 film upon FeCl3 doping. 

The dopants penetrate the film more deeply with increasing doping time. A pristine PBTTT-C14 

film shows a band at 2.37 eV. Upon FeCl3 doping, the intensity of the 2.37-eV band decreases, 

and two new bands appear at approximately 1.52 eV and in the NIR range extending into the 

infrared region. After 120 min of doping, the band at 1.52 eV is the most intense. After 140 min, 

the intensity of the band in the NIR region had increased further, while the intensity of the 1.52-

eV band had decreased. After 270 min, the band at 1.52 eV had disappeared. These spectral 

changes can be explained based on the electronic-level diagrams of a positive polaron and a 

positive bipolaron in the one-electron picture shown in Figure 2.7. The 2.37-eV band observed 

for the pristine PBTTT-C14 film originates from the π-π* transition (N1). When a positive polaron 

forms, two localized electronic levels are generated (+ε and −ε). Therefore, two strong transitions, 

P1 and P2, are observed. The 1.52-eV band is attributed to P2, and the band in the NIR region is 

attributed to P1. The positive bipolaron has only one strong band, BP1. The NIR band that appears 

after 270 min is attributed to BP1. These results indicate that polarons form in the early doping 

stage, and bipolarons form after 140 min, as evidenced by the decrease in the intensity of the 1.52-

eV band. After 270 min, bipolarons are the dominant species, as evidenced by the absence of the 

1.52-eV band, although a small number of polarons may exist because it is difficult to separate 

the remaining 1.52-eV band into the components of bipolarons and polarons. 

    The 785-nm excited Raman spectra of PBTTT-C14 were obtained at the same time as the 

optical absorption spectra. Figure 2.8 shows changes in the Raman spectra of the PBTTT-C14 

film upon FeCl3 doping. The excitation wavelength of 785 nm (1.58 eV) is located within the 

polaron absorption band (1.52 eV). Notably, the intensities of the Raman bands of the polarons 
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are enhanced by the resonance Raman effect. The Raman spectrum of the pristine PBTTT-C14 

film exhibits intense bands at 1490, 1457, 1412 and 1391 cm−1. The 1412-cm−1 band is assigned 

to the C=C stretching vibration of the thienothiophene ring. The 1490- and 1391-cm−1 bands are 

assigned to the C=C and C−C stretching vibrations of the thiophene ring, respectively [21]. The 

observed Raman spectra can be attributed to polarons and/or bipolarons based on the results of 

the optical absorption spectra. After 10 min, the Raman spectrum changed substantially. The 

spectrum shows intense bands at 1452, 1381, 1210, 744, 698 and 638 cm−1. These bands are 

attributed to polarons. Carriers observed in the first 120 min of doping are attributed to polarons. 

The bands at 1452 and 1381 cm−1 show small downward shifts and changes in their relative 

intensities. These downward shifts originate from increasing the effective conjugation and/or 

making the polaron pair [22]. At 140 min of doping, the spectrum shows bands at 1446, 1374, 

1210, 741, 699 and 637 cm−1. The spectra change with increasing doping time. At 270 min, the 

spectrum shows bands at 1434, 1362, 1208, 738, 694 and 635 cm−1. These bands are attributed to 

bipolarons. These bands show small downward shifts from those of polarons. These downward 

shifts originate from decreasing chain length and decreasing the force constants associated the 

C=C and C−C [20]. It is because it reduces a bond order when the π electron is removed from 

C=C. These results indicate that the Raman spectral features between 1500 and 1300 cm−1 can be 

used to identify the types of carriers in PBTTT-C14. 

 

2.3.2 Raman spectra of an ILGT 

 

    Figure 2.9 shows the changes in the Raman spectra of an ILGT as a function of −VG from 

0.0 to 2.0 V. The spectrum acquired at −VG = 0.0 V shows intense bands at 1488, 1413 and 1391 

cm−1. These bands are attributed to neutral PBTTT-C14 polymers, and other bands observed in 

the spectrum are attributed to [BMIM][TFSI] as marking the star in Figure 2.9. The intensity of 

the 1391-cm−1 band at −VG = 0.9 V increases dramatically. The spectra acquired at −VG = 0.9 and 

1.1 V show a mixture of neutral species and polarons. At −VG = 1.3 V, the features of the spectrum 

are attributed to polarons because this spectrum is quite similar to that of the polarons generated 

by FeCl3 doping shown in Figure 2.8. The spectra acquired between −VG = 1.4 and 1.7 V show a 

mixture of polarons and bipolarons. The features of the spectra acquired above −VG = 1.8 V are 

attributed to bipolarons. Accordingly, polarons form below −VG = 1.3 V; polarons and bipolarons 

coexist between −VG = 1.4 and 1.7 V, and bipolarons are dominant above −VG = 1.8 V. 
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2.3.3 Electrical properties of an ILGT 

 

    The relationship between ID and VG at VD = −0.01 V for an ILGT is shown in Figure 2.10. In 

the −VG range of 0.0 to 1.1 V, −ID increases gradually. On the other hand, −ID increases rapidly 

from 1.1 to 1.6 V. Initially, PBTTT-C14 is electrostatically doped by the EDL. Above 1.1 V, anions 

penetrate into the PBTTT-C14 film and the electrochemical doping occurs. The maximum value 

of −ID is reached at 1.9 V. The σ values were calculated from these values of ID and VD. The values 

of n and x were calculated from Q. The relationship between n and −VG is shown in Figure 2.11, 

and the relationship between x and −VG is shown in Figure 2.12. The values of σ and μ are plotted 

against x in Figure 2.13. The σ values increase gradually from x = 0 to 0.69% and then increase 

rapidly when x is greater than 1.0%. The maximum value of σ (62.2 S cm−1) was observed at x = 

9.4%. Based on the Raman results, polarons form below x = 1.5%, and bipolarons start to form at 

x = 3.0%. Above x = 8.2%, bipolarons are dominant. The μ values of the polarons are strongly 

dependent on x, and they increase with increasing x. The μ values of the bipolarons decrease 

slightly with increasing x. The highest μ value of the polarons (4.2 × 10−2 cm2 V−1 s−1) was 

observed at x = 1.5% and n = 2.0 × 1020 cm−3 (−VG = 1.3 V). The highest μ value of the bipolarons 

(0.36 cm2 V−1 s−1) was observed at x = 8.2% and n = 1.1 × 1021 cm−3 (−VG = 1.8 V). It has been 

reported that the bipolaron mobility in P3HT is 2.5 × 10−3 cm2 V−1 s−1, and bipolarons of P3HT 

decrease the conductivity of transistors because of their low mobility [16]. However, the 

bipolarons of PBTTT-C14 show high mobilities, indicating that both polarons and bipolarons can 

serve as effective carriers. 

 

2.4 Conclusion 

 

    Optical absorption and Raman spectra of polarons and bipolarons formed in a PBTTT-C14 

film by FeCl3 vapor doping were measured. The Raman spectra of polarons and bipolarons were 

elucidated based on the assignment of their optical absorption spectra. The electrical 

conductivities and doping levels were obtained from electrochemical measurements of the ILGT 

fabricated with PBTTT-C14. The type of carriers formed in the ILGT as a function of the 

doping level was elucidated using Raman spectroscopy.  
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    Polarons form below x = 1.5%, and bipolarons start to form at x = 3.0%. Above x = 8.2%, 

bipolarons are the dominant species. The highest μ value of the polarons (4.2 × 10−2 cm2 V−1 s−1) 

was observed at x = 1.5% and n = 2.0 × 1020 cm−3 (−VG = 1.3 V). The highest μ value of the 

bipolarons (0.36 cm2 V−1 s−1) was observed at x = 8.2% and n = 1.1 × 1021 cm−3 (−VG = 1.8 V). 

Bipolarons of PBTTT-C14 show high mobilities, whereas bipolarons of P3HT show low 

mobilities. It indicates that a bipolaron can be also used as an effective carrier. 

    The combination of Raman spectroscopy and electrochemical measurements is useful for 

investigating carriers in ILGTs fabricated with organic polymers. The critical doping level of the 

polaron-to-bipolaron transition and the dependence of the mobilities on the doping levels can be 

determined using this method. 
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Figure 2.1. Chemical structures 
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Figure 2.2. Schematic of an ILGT device 
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Figure 2.3. The cell for chemical vapor doping 
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Figure 2.4. Raman measurements in the channel region with electrochemical measurements 
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Figure 2.5. IG as a function of time 
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Figure 2.6. Changes in the Vis-NIR absorption spectra of a PBTTT-C14 film doped with FeCl3 
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Figure 2.7. Configurations of the electron levels of a neutral conjugated polymer, a positive polaron 

and a positive bipolaron 

(CB and VB denote the conduction band and valence band, respectively) 
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Figure 2.8. Changes in the Raman spectra of a PBTTT-C14 film upon doping with FeCl3 
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Figure 2.9. Changes in the Raman spectra of an ILGT fabricated with PBTTT-C14 

(* indicates the bands of the ionic liquids) 
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Figure 2.10. Transfer characteristics of an ILGT fabricated with PBTTT-C14 
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Figure 2.11. Plots of n versus −VG for an ILGT fabricated with PBTTT-C14 
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Figure 2.12. Plots of x versus −VG for an ILGT fabricated with PBTTT-C14 
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Figure 2.13. Plots of σ and μ versus x for an ILGT fabricated with PBTTT-C14 
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Chapter 3 

 

 

 

 

Study on the effect of annealing on carriers of 

PBTTT-C16 generated in ILGTs 
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3.1 Introduction  

 

    In this chapter, ILGTs fabricated with unannealed and annealed PBTTT-C16 films as the active 

layer and [BMIM][TFSI] as the ionic liquid were investigated using Raman and electrochemical 

measurements. 

Thermal annealing is a common method for improving the properties of organic devices because 

it alters the solid structure [1–3]. PBTTT-C16 has long side chains and good solubility (Figure 3.1), 

making it suitable for the fabrication of transistors by wet processing [4–8]. PBTTT has two 

endotherms on heating and two exotherms on cooling [9]. PBTTT-C16 undergoes phase transitions to 

a liquid crystalline phase (smectic liquid crystal) above 130 °C and to an isotropic phase (liquid) above 

235 °C [10]. The crystallinity of the polymer is increased by heating above the phase-transition 

temperature and slow cooling to room temperature. In addition, the different heating above 130 and 

235 °C exhibits a change of a surface topology as a terrace and a ribbon shape, respectively [4,11]. 

The morphological changes in PBTTT improve the mobility of transistors [4,10,12,13]. 

The stability of the carriers is associated with the electron-lattice interactions and the electron-

electron interaction in a single chain as the basic theory [14,15]. However, the effect of interchain 

coupling is also important for the stability of carriers [16]. Therefore, the solid structures of conjugated 

polymers affect the carrier stabilities. In ILGTs, the doping mechanism, which includes penetration of 

anions into the active layer, is different from that of OFETs. The penetrating anions also affect the 

stability of carriers as a counter ion [17]. Therefore, the structural changes of not only the surface 

topology but also inside the film have a great influence on the generation of carriers. 

Raman spectroscopy can be used not only to identify the carrier species but also to evaluate the 

crystalline contents of an organic semiconductor film. The band of PBTTT-C16 was deconvoluted into 

two bands attributable to the crystalline and amorphous regions, which can be used to evaluate the 

overall crystalline contents. For the carrier identification, the Raman spectra of the polarons and 

bipolarons of PBTTT-C16 must be elucidated. Therefore, the optical absorption and Raman spectra of 

a PBTTT-C16 film doped with FeCl3 were acquired to identify the Raman spectra of the polarons and 

bipolarons, as described in Chapter 2. Carrier generation in ILGTs was observed using Raman 

spectroscopy, and the mobility of each carrier and the critical doping level of the polaron-to-bipolaron 

transition can be determined from electrochemical measurements. I discuss the relationship between 

the types of carriers generated in the ILGTs fabricated with unannealed and annealed PBTTT-C16 

films and mobilities, conductivities and doping levels for carrier generation. 
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3.2 Experimental methods 

 

3.2.1 Materials and devices 

 

    Lisicon SP210® (PBTTT-C16) was purchased from Merck and used as received. 

[BMIM][TFSI], FeCl3, and 1,2-dichlorobenzene were purchased from Kanto Chemical. EAGLE 

XG® glass substrates (20×20×0.7 mm) were purchased from Coring. The structure of the ILGT 

is the same as what is shown in Figure 2.2. Ni (5 nm) and Au (45 nm) were deposited on the glass 

substrate as the source and drain electrodes using a shadow mask. The width and length of the 

channel were 1 mm and 50 μm, respectively. PBTTT-C16 films were prepared from a solution of 

1,2-dichlorobenzene (12 mg/mL, at 90 °C) using spin coating. The thickness of the film was 

measured using a Bruker AXS Dektak XT surface profilometer, and it was 5.0×10 nm. The as-

prepared film was annealed at 235 °C for 20 min under vacuum. XRD patterns were measured 

using a Rigaku RINT-Ultima III X-ray diffractometer. AFM images were acquired using a Digital 

Instruments Nanoscope IIIa microscope. [BMIM][TFSI] was used as the gate dielectric. The 

thickness of the ionic-liquid layer was 200 μm using a Naflon® (polytetrafluoroethylene) spacer 

purchased from NICHIAS. An ITO-coated glass substrate with a sheet resistivity of 30 Ω sq−1 was 

purchased from GEOMATEC. The surface of the ITO-coated glass substrate was cleaned with 

UV-ozone plasma treatment and used as the gate electrode. 

 

3.2.2 Raman measurements of annealed PBTTT-C16 films 

 

    The quartz substrate was cleaned by sonication in an aqueous detergent solution, pure water, 

acetone, and then isopropyl alcohol for 5 min each, followed by UV/ozone treatment for 30 min. 

PBTTT-C16 films were fabricated on the quartz substrate. The films were thermally annealed at 

180, 235 and 250 °C for 20 min under vacuum. Raman spectra were obtained using a Renishaw 

InVia Raman microscope with a Leica N PLAN L 50× objective (working distance, 8.2 mm; 

numerical aperture, 0.50) with an excitation wavelength of 785 nm. The spatial resolution was 

2.8 cm−1. 
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3.2.3 FeCl3 vapor doping 

 

A PBTTT-C16 film was doped by exposure to FeCl3 vapor at reduced pressure using a cell, 

and the setup is the same as that in Figure 2.3. The PBTTT-C16 film was formed on a BaF2 

window of the cell by spin coating. Solid FeCl3 powder was placed into the cell. The Vis/NIR 

absorption spectra were obtained using a JASCO V-570 UV/Vis/NIR spectrometer. Infrared 

spectra were measured on a Digilab FTS-7000 FT-IR spectrometer with a deuterium triglycine 

sulfate detector. Raman spectra were measured on a Renishaw InVia Raman microscope with an 

excitation wavelength of 785 nm. 

 

3.2.4 Raman and electrochemical measurements of ILGTs 

 

Raman and electrochemical measurements were performed on the same ILGT. Raman 

spectra were measured on a Renishaw InVia Raman microscope with an excitation wavelength of 

785 nm. ID was measured, and VD was applied using a KEITHLEY 6487 picoammeter/voltage 

source. IG was measured, and VG was applied using an ADVANTEST R6243DC current 

monitor/voltage source. The dependence of the Raman spectrum on VG was measured from VG = 

0 to −2.0 V every −0.1 V, and measurements were taken 30 s after the change in the VG. The 

change in IG as a function of time was integrated over 200 s starting from the change in VG; the 

current after 200 s was considered IL. ID was also measured after 200 s. Thus, the stepwise 

injection charge was obtained. The injected charge (Q) at VG was the sum of the stepwise injected 

charges. The charge density (n) can be evaluated from equation 2.1. Based on the XRD data, the 

lattice parameters of the unit cell of a PBTTT-C16 triclinic crystal are a = 2.35 nm, b = 0.54 nm, 

c = 1.35 nm, α = 137°, β = 87°, γ = 92°, and Z = 1 [18]. Using these values, the number of repeating 

units per unit volume (N) was calculated to be 8.57×1020 cm−3. The number of π electrons in one 

unit of PBTTT-C16 was 14. The doping level per π electron (x, %/π electron) was calculated using 

equation 2.2. The average electrical conductivity (σ) in the channel was calculated from ID, VD = 

−0.01 V, the width of the channel (W = 1.0 mm), the length of the channel (L = 5.0×10 μm) and 

the thickness of the film (d = 5.0×10 nm). The mobility (μ) was obtained from σ, the carrier density 

(p, p = n for polarons; p = n/2 for bipolarons), and the charge of a carrier (q, q = +e for a polaron; 

q = +2e for a bipolaron) using equation 2.3. 
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3.3 Results and discussion 

 

3.3.1 Evaluation of the crystalline content using Raman spectroscopy 

 

    AFM images of the unannealed and annealed samples are shown in Figure 3.2. The surface 

roughness was reduced by thermal annealing. The XRD patterns of the unannealed and annealed 

PBTTT-C16 films are shown in Figure 3.3. Diffraction lines were observed at 2θ = 3.71, 7.43, 

and 11.0° and are assigned to the (100), (200), and (300) planes, respectively [19]. The intensities 

of the lines of the annealed film are stronger than those of the unannealed film, indicating that 

thermal annealing increases the crystallinity of the film. The crystallinity of polyethylene has been 

determined by XRD in Ref. [20]. If an amorphous halo is observed in XRD data, the crystallinity 

can be evaluated. However, the XRD signals of PBTTT-C16 shows so small 2 θ angles, and it is 

difficult to observe the amorphous halo clearly because the injected X-ray overlaps the region of 

the amorphous halo. Therefore, XRD is not suitable to evaluate the crystallinity of PBTTT-C16 

films. The Raman spectra of an unannealed PBTTT-C16 film are shown in Figure 3.4. The bands 

at 1490 cm−1 and 1416 cm−1 are assigned to the C=C stretching mode of the thiophene ring, and 

the band at 1392 cm−1 is assigned to the the C=C stretching mode of the thienothiophene ring [6]. 

The 1490-cm−1 band is indicative of the effective conjugation, which is dependent on the solid 

state of the polymer. Therefore, this band was deconvoluted into a crystalline band and an 

amorphous band to evaluate the crystalline content in PBTTT-C16 films. The parameters of the 

curve fitting were determined and are shown in Table 3.1. The position and the FWHM of the 

crystalline band are fixed at 1489.4 cm−1 and 12 cm−1, respectively. The band shape is a Lorentzian 

function. The amorphous region does not have a simple morphology, and its band shape is that of 

a Gaussian function. Therefore, the band shape is a linear combination of the Lorentzian and 

Gaussian functions. The position of the amorphous band was fixed at 1492 cm−1. The FWHM and 

the ratio of Gaussian and Lorentzian function were variable. A least-squares fitting method was 

used for decomposition of the observed spectra from each set of annealing conditions. The results 

of the decomposition of the bands in the spectra of the PBTTT-C16 films are shown in Figures 

3.4 to 3.7. The black lines are the experimental data. The red lines are the compositions of all 

bands. The yellowish green lines are the decomposed bands. The values of FWHMs and the 

Gaussian contents of the amorphous bands are shown in Table 3.2. The crystal content (XC) of the 

PBTTT-C16 film was calculated from the following equation: 
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𝑋C =
𝐼C

𝐼C + (𝜎𝐶/𝜎𝐴)𝐼A
(3.1) 

 

where IC and IA are the integrated intensities of the crystalline and amorphous bands, respectively, 

and σC and σA are the cross sections of the crystalline and amorphous bands, respectively. The 

ratio of σC/σA of conjugated polymers have been reported in several studies [21–23]. The 

minimum reported value is 0.59 in Ref. [21], and the maximum reported value is 1.04 in Ref. [23]. 

The values of XC calculated from these ratios of cross sections are shown in Table 3.3. Thermal 

annealing increases XC. Raman spectroscopy was used to evaluate XC.  

 

3.3.2 Vis-NIR-IR absorption and Raman spectra of a PBTTT-C16 film doped with FeCl3 

 

    Figure 3.8 shows the changes in the optical spectra of a PBTTT-C16 film upon FeCl3 doping. 

The number of dopants that penetrates the film increases with increasing doping time. A pristine 

PBTTT-C16 film shows a band at 2.26 eV originating from the π-π* transition (N1). Upon FeCl3 

doping, the intensity of the 2.26-eV band decreases, and two new bands appear at approximately 

0.41 and 1.71 eV. After 150 min of doping, the intensity of the band at 1.46 eV was strongest. 

After 180 min, the intensity of the band at 0.24 eV had increased further, while the intensity of 

the 1.46-eV band had decreased. After 330 min of doping, the 1.46-eV band almost disappears. 

These spectral changes can be explained based on the theory discussed in Section 2.3.1. The 1.46-

eV band is attributed to P2, and the band in the NIR region is attributed to P1. The 0.24-eV band 

in the NIR region is attributed to BP1. These results indicate that polarons form in the first 150 

min of doping, and then bipolarons form after 180 min, as evidenced by the decrease in the 

intensity of the 1.46-eV band. After 330 min, bipolarons are the dominant species, as evidenced 

by the absence of the 1.46-eV band, although a small number of polarons may exist after 330 min. 

It is difficult to separate the remaining 1.46-eV band into the components of polarons and 

bipolarons because the weak band originated from bipolarons may be observed around 1.46 eV.  

    The 785-nm excited Raman spectra and the optical absorption measurements of PBTTT-C16 

were obtaine. Figure 3.9 shows the changes in the Raman spectra of the PBTTT-C16 film upon 

FeCl3 doping. The excitation wavelength of 785 nm (1.58 eV) is within the polaron absorption 

band (1.46 eV). The changes in the Raman spectra can be attributed to polarons and/or bipolarons 
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based on the results of the optical absorption spectra. After 30 min of doping, the Raman spectrum 

had changed substantially. The spectrum shows intense bands at 1457, 1332, 1385, 1208, 744 and 

692 cm−1, which are attributed to polarons. The carriers ovserved in the first 150 min of doping 

are attributed to polarons. The bands at 1457 and 1385 cm−1 show small downward shifts and a 

change in their relative intensities. The band at 1385 cm−1 are assigned to a stretching mode of 

the thienothiophene ring [6]. After 180 min of doping, the intensity of the band at 1431 cm−1 

increases substantially. At 390 min, i.e., when bipolarons are dominant, bands are observed at 

1502, 1431, 1370, 1207, 741, and 690 cm−1, and they are attributed to bipolarons. The band at 

1431 cm−1 is more intense than the band at 1370 cm−1. The band at 1370 cm−1 is assignable to a 

stretching mode of the thienothiophene ring. These results indicate that Raman spectral features 

between 1500 and 1300 cm−1 can be used to identify the types of carriers in PBTTT-C16. Polarons 

have the strongest band at 1385−1380 cm−1, and a strong band at 1457−1451 cm−1 with a 1432-

cm−1 shoulder. On the other hand, bipolarons have the strongest band at 1431 cm−1, and a strong 

band at 1373−1370 cm−1. 

 

3.3.3 Raman spectra of ILGTs 

 

    Figure 3.10 shows the changes in the Raman spectra of an unannealed ILGT as a function of 

−VG from 0.0 to 2.0 V. The spectrum acquired at −VG = 0.0 V shows intense bands at 1490, 1460, 

1417 and 1393 cm−1, which are indicative of neutral PBTTT-C16 polymers. The other observed 

bands are attributed to [BMIM][TFSI]. The intensity of the 1392-cm−1 band at −VG = 0.9 V 

increases. The spectra acquired at −VG = 0.9 and 1.0 V are attribute to a mixture of neutral species 

and polarons. The spectra collected between −VG = 1.1 and 1.4 V are attributed to polarons 

because these spectra are quite similar to that of polarons generated by FeCl3 doping shown in 

Figure 3.9. The spectra acquired at −VG = 1.5 and 1.6 V are attributed to a mixture of polarons 

and bipolarons. The spectra acquired above −VG = 1.7 V are attribute to bipolarons. Accordingly, 

polarons form below −VG = 1.4 V, polarons and bipolarons coexist at −VG = 1.5 and 1.6 V, and 

bipolarons are dominant above −VG = 1.7 V. 

    The changes in the Raman spectra of an ILGT fabricated with an annealed PBTTT-C16 film 

on VG is shown in Figure 3.11. The types of carriers generated in the device are also identified as 

described above. According to the Raman spectra, polarons form below −VG = 1.1 V, polarons 

and bipolarons coexist at −VG = 1.2 and 1.3 V, and bipolarons are dominant above −VG = 1.4 V. 
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3.3.4 Electrochemical properties of ILGTs 

 

    The transfer characteristics of an ILGT fabricated with an unannealed PBTTT-C16 film at 

VD = −0.01 V are shown in Figure 3.12. The −ID increases gradually when a voltage is initially 

applied due to electrostatic doping. On the other hand, −ID increases rapidly from 1.0 to 1.4 V and 

plateaus at voltages from 1.4 to 2.0 V due to electrochemical doping. The increases in −ID indicate 

the formation of carriers in the channel region. The n and x were calculated from the measured Q. 

The relationship between n and −VG is shown in Figure 3.13, and the relationship between x and 

−VG is shown in Figure 3.14. According to the Raman results, polarons are generated below 5.5%. 

Bipolarons begin to form from polarons at x = 7.3%, and they are the dominant carriers above x 

= 11%. The σ values were calculated from the observed ID values and plotted against x in Figure 

3.15. The σ values increased gradually from x = 0 to x = 1.2% and then increase rapidly above x 

= 1.5%. In this range, the σ values show a plateau at approximately 193 S cm−1. The μ values of 

the polarons were obtained from the data collected below x = 5.5% (n = 6.6×1020 cm−3, −VG = 1.4 

V). The μ values of the bipolarons were obtained from the data collected above x = 11% (n = 

1.3×1021 cm−3, −VG = 1.7 V), although a small number of polarons may exist even above 11%. 

These μ values were also plotted against x in Figure 3.15 with the σ values. The μ values of the 

polarons were strongly dependent on x, and they increased with increasing x. The μ values of the 

bipolarons were moderately dependent on x. The highest μ values of the polarons and bipolarons 

were 1.0 cm2 V−1 s−1 (observed at x = 5.5%, n = 6.6×1020 cm−3) and 0.92 cm2 V−1 s−1 (observed at 

x = 11%, n = 1.3×1021 cm−3), respectively. 

    The transfer characteristics of an annealed PBTTT-C16 ILGT at VD = −0.01 V are shown in 

Figure 3.16. The n and x values were calculated from the measured Q. The relationship between 

n and −VG is shown in Figure 3.17, and the relationship between x and −VG is shown in Figure 

3.18. The σ values were calculated from the observed ID values and were plotted against x in 

Figure 3.19. The μ values of the polarons were obtained from the data collected below x =2.7% 

(−VG = 1.1 V); the μ values of the bipolarons were obtained from the data collected above x = 

4.8% (−VG = 1.4 V). The plots of these μ values are also shown in Figure 3.19. The σ values 

increase gradually from x = 0 to x = 0.19% and then increase rapidly above x = 0.28%. These 

increases are caused by electrostatic and electrochemical doping, respectively. According to the 

Raman results, polarons are generated below x = 2.7%. Bipolarons start to form from polarons at 
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x = 3.4%, and they are the dominant carriers above x = 4.8%. Then, the σ values show a plateau 

at approximately 118 S cm−1. The μ values of the polarons increase with increasing x. The highest 

μ value of the polarons was 1.0 cm2 V−1 s−1, which was observed at x = 2.7% (n = 3.2×1020 cm−3). 

The μ values of the bipolarons are moderately dependent on x. The highest μ value of the 

bipolarons was 1.2 cm2 V−1 s−1, and this value was observed at x = 4.8 and 5.2% (n = 5.7 and 

6.2×1020 cm−3). 

    Bipolaron formation begins at x = 7.3% in the unannealed ILGT, whereas bipolaron 

formation begins at x = 3.4% in the annealed ILGT, which indicates that polarons are more stable 

in the disordered structure of the unannealed PBTTT-C16 than they are in the annealed system. 

The σ values increased rapidly above x = 1.5% (−VG = 1.0 V) for the unannealed ILGT. On the 

other hand, the σ values increased rapidly above x = 0.28% (−VG = 0.5 V) for the annealed ILGT. 

This result can be attributed to the difference in the oxidation potential of the unannealed and 

annealed PBTTT-C16. The highest μ values of the polarons and bipolarons in the unannealed 

ILGT are in the same order as those of the annealed ILGT. The crystalline content of PBTTT-C16 

in the annealed film is greater than that of the unannealed film. The highest μ value of the 

bipolarons in the annealed PBTTT-C16 ILGT is slightly higher than that in the unannealed ILGT. 

A higher crystalline content was achieved, which resulted in the highest μ value. The mobilities 

of the bipolarons in PBTTT-C16 are also substantially larger than those of the bipolarons in P3HT. 

 

3.4 Conclusion 

 

    The values of XC in PBTTT-C16 films were evaluated using Raman spectroscopy. 

Deconvolution of the Raman bands showed that thermal annealing increased XC. Raman 

spectroscopy is a powerful tool for evaluating the XC of polymers. 

    The changes in the absorption and Raman spectra of a PBTTT-C16 film upon FeCl3 doping 

were determined. Based on the assignments of the absorption spectra, the Raman spectra of the 

positive polarons and bipolarons of PBTTT-C16 were elucidated. Carrier formation in ILGTs was 

explained using the Raman spectra of the carriers. The electrical conductivity and doping levels 

were determined using electrochemical measurements of the ILGTs fabricated with unannealed 

and annealed PBTTT-C16 films. The types of carriers were as a function of the doping level were 

elucidated. The mobilities were calculated from the conductivities and carrier densities. 
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Bipolarons start to form at x = 7.3%/π electron and are the dominant carriers above x = 11% 

for unannealed PBTTT-C16, whereas bipolarons begin to form at x = 3.4% and are the dominant 

carriers above x = 4.8% for annealed PBTTT-C16. Bipolarons in annealed PBTTT-C16 form at 

lower doping levels than in unannealed PBTTT-C16. Polarons are more stable in the disordered 

structure of PBTTT-C16. The mobilities of bipolarons are high in both unannealed and annealed 

films. The highest μ values of the bipolarons in the unannealed and annealed films were 0.92 and 

1.2 cm2 V−1 s−1, respectively. 
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Figure 3.1. Chemical structure of PBTTT-C16 
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Figure 3.2. AFM images of unannealed and annealed PBTTT-C16 films  
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Figure 3.3 XRD patterns of annealed and unannealed PBTTT-C16 films 
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Figure 3.4. Raman spectrum of an unannealed PBTTT-C16 film 

 

 

Figure 3.5. Raman spectrum of an annealed PBTTT-C16 film at 180 °C 
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Figure 3.6. Raman spectrum of an annealed PBTTT-C16 film at 235 °C 

 

 

Figure 3.7. Raman spectrum of an annealed PBTTT-C16 film at 250 °C 
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Figure3.8. Changes in the absorption spectra of a PBTTT-C16 film upon FeCl3 doping 
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Figure 3.9. Changes in the Raman spectra of a PBTTT-C16 film upon FeCl3 doping. 
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Figure 3.10. Changes in the Raman spectra of an unannealed PBTTT-C16 ILGT upon application of 

−VG 

(* indicates the bands of [BMIM][TFSI]) 
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Figure 3.11. Changes in the Raman spectra of an annealed PBTTT-C16 ILGT upon application of 

−VG 

(* indicates the bands of [BMIM][TFSI]) 

 

  



70 

 

 

 

 

Figure 3.12. Transfer characteristics of an ILGT fabricated with unannealed PBTTT-C16 
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Figure 3.13. Plots of n versus −VG for an ILGT fabricated with unannealed PBTTT-C16 
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Figure 3.14. Plots of x versus −VG for an ILGT fabricated with unannealed PBTTT-C16 
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Figure 3.15. Plots of σ and μ versus x for an ILGT fabricated with unannealed PBTTT-C16 
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Figure 3.16. Transfer characteristics of an ILGT fabricated with annealed PBTTT-C16 
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Figure 3.17. Plots of n versus −VG for an ILGT fabricated with annealed PBTTT-C16 
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Figure 3.18. Plots of x versus −VG for an ILGT fabricated with annealed PBTTT-C16 
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Figure 3.19. Plots of σ and μ versus x for an ILGT fabricated with annealed PBTTT-C16 
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Table 3.1. Parameters of the Raman band fitting 

Assignments Peak position / cm−1 FWHM / cm−1 Gaussian ratio / % 

Crystalline 1489.4 12 0 

Amorphous 1492 Variable Variable 

 

 

Table 3.2. Values of the parameters of the amorphous band 

Annealing temperature / °C FWHM / cm−1 Gaussian ratio / % 

Unannealed 18.1 98.3 

180 12.1 78.2 

235 12.8 89.7 

250 13.1 100 

 

 

Table 3.3. Values of XC 

Annealing temperature / °C 
ΧC 

σC/σA = 0.59 [21] σC/σA = 1.04 [23] 

Unannealed 0.66 0.52 

180 0.81 0.71 

235 0.92 0.86 

250 0.91 0.85 
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Chapter 4 

 

 

 

 

Study on the dependence of doping on the ionic 

liquid species in ILGTs fabricated with PBTTT-

C16 
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4.1 Introduction 

 

    In this chapter, the effect of anions in ILGTs fabricated with a PBTTT-C16 film was investigated 

using Raman spectroscopy and electrochemical measurements. Several ionic liquids can be used gate 

insulators in ILGTs [1–11]. The ionic liquid can affect the electrical properties of the ILGTs, such as 

mobilities, conductivities and threshold voltages [12,13].  

The stability of polarons and bipolarons is explained by electron-lattice interaction and electron-

electron interaction as a basic theory [14,15]. In addition, counterions also affect the stability of 

polarons and bipolarons [16,17]. In electrochemical doping, charges are injected into an active layer 

with migration of anions into the layer, whereas only charges are injected into the layer in typical 

OFETs [13]. The injected anions are placed on a polymer chain as counterions. Therefore, anions affect 

carrier generation, as the stability of positive polarons and bipolarons depends on anions. However, 

the effect of anions on the critical doping level of the polaron-to-bipolaron transition has not been 

elucidated yet. [EMIM][TFSI] or [EMIM][FAP] (Figure 4.1) were used as a gate dielectric in this 

chapter. These ionic liquids have two different sizes of anions, [TFSI]− and [FAP]−. The critical doping 

level of the polaron-to-bipolaron transition and the mobilities of positive polarons and bipolarons were 

obtained using electrochemical measurements based on ILGTs fabricated with [EMIM][TFSI] or 

[EMIM][FAP]. Herein, I discuss the carrier generation and the electrical properties of the PBTTT-C16 

films doped with [TFSI]− and [FAP]−. 

 

4.2 Experimental methods 

 

4.2.1 Materials and devices 

 

    The structures of the ILGTs were the same as that described in Section 2. Ni (5 nm) and Au 

(45 nm) were deposited on the glass substrate as the source and drain electrodes using a shadow 

mask. The width and length of the channel were 1.0 mm and 5.0×10 μm, respectively. The 

PBTTT-C16 films were prepared from a 1,2-dichlorobenzene solution (12 mg/mL, at 90 °C) by 

spin coating. [EMIM][TFSI] and [EMIM][FAP] were purchased from Kanto Chemical and Merck, 

respectively, and were used as the gate dielectric. The thickness of the ionic-liquid layer was 200 

μm using a Naflon® (polytetrafluoroethylene) spacer. The surfaces of ITO-coated glass substrates 

with a sheet resistivities of 30 Ω sq−1 were cleaned with UV-ozone plasma treatment and used as 
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the gate electrodes. 

 

4.2.1 Raman and electrochemical measurements 

 

    Raman and electrochemical measurements were performed in the same way as in chapter 3. 

Raman spectra were acquired every 0.1 V of −VG from 0.0 to 1.7 V for an ILGT with 

[EMIM][TFSI] and from 0.0 to 1.4 V for an ILGT with [EMIM][FAP]. The injected charge (Q), 

the charge density (n), the doping level per π electron (x, %/π electron), the average electrical 

conductivity (σ) in the channel and the mobility (μ) of positive polarons and bipolarons were 

obtained in the same way as in chapter 3.  

 

4.3 Results and discussion  

 

4.3.1 Raman spectra of ILGTs 

 

    The changes in the Raman spectra of an ILGT with [EMIM][TFSI] are shown in Figure 4.2. 

The spectrum collected at −VG = 0.0 V is attributed to neutral PBTTT-C16. The intensity of the 

1391-cm−1 band at −VG = 0.5 V increases. The spectra collected at −VG = 0.5 and 0.6 V are 

attributed to the mixture of neutral species and polarons. The spectra acquired between −VG = 0.7 

and 1.0 V indicate the presence of polarons because these spectra have features similar to the 

spectra of polarons generated with FeCl3 doping. The spectra acquired between −VG = 1.2 and 1.4 

V are attributed to a mixture of polarons and bipolarons. The spectra acquired between −VG = 1.5 

and 1.7 V are attributed to bipolarons. Accordingly, polarons form below −VG = 1.0 V, polarons 

and bipolarons coexist between −VG = 1.2 and 1.4 V, and bipolarons are dominant above −VG = 

1.5 V. 

    The changes in the Raman spectra of an ILGT with [EMIM][FAP] are shown in Figure 4.3. 

The spectrum acquired at −VG = 0.0 V is attributed to neutral PBTTT-C16. The intensity of the 

1391-cm−1 band at −VG = 0.1 V increases. The spectra acquired between −VG = 0.1 and 0.5 V 

indicate the presence of both neutral species and polarons. The spectra collected between −VG 

=0.6 and 1.3 V are attributed to polarons. The spectrum collected at −VG = 1.4 indicates a mixture 

of both polarons and bipolarons. In this region, a spectrum originating from only bipolarons was 

not observed. Accordingly, polarons form below −VG = 1.3 V, and polarons and bipolarons coexist 
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at −VG = 1.4 V. 

 

4.3.2 Electrical properties of ILGTs 

 

    The transfer characteristics of an ILGT fabricated with [EMIM][TFSI] at VD = −0.01 V are 

shown in Figure 4.4. The −ID increases gradually until −VG = 0.5 V due to electrostatic doping. 

On the other hand, −ID increases rapidly from 0.6 to 1.2 V and shows a plateau from 1.2 to 1.5 V. 

From 1.6 to 1.7, −ID decreases slightly. The n and x values were calculated from measured Q 

values using electrochemical measurements. The relationship between n and −VG is shown in 

Figure 4.5; the relationship between x and −VG is shown in Figure 4.6. According to the Raman 

results, polarons are generated below 3.2%. Bipolarons begin to form at x = 4.5% and are 

dominant above x = 9.9%. The σ values were calculated from the observed ID values and were 

plotted against x in Figure 4.7. The σ values increase gradually from x = 0 to 0.14% and then 

increase rapidly above x = 0.28%. The maximum σ value is 137 S cm−1, which was observed at x 

= 6.1% (−VG = 1.3 V). The μ values of the polarons were obtained from the data collected below 

x = 3.2% (n = 3.8×1020 cm−3, −VG = 1.1 V); the μ values of the bipolarons were obtained from the 

data collected above x = 9.9% (n = 1.2×1021 cm−3, −VG = 1.5 V). These μ values were plotted 

against x and are also shown in Figure 4.8. The μ values of the polarons depend on x, and they 

increase with increasing x. The μ values of the bipolarons are moderately dependent on x, and 

they decrease with increasing x. The highest μ values of the polarons and bipolarons were 1.3 cm2 

V−1 s−1 (x = 3.2%, n = 6.4×1020 cm−3) and 0.56 cm2 V−1 s−1 (x = 9.9%, n = 1.2×1021 cm−3), 

respectively. 

    The transfer characteristics of an ILGT fabricated with [EMIM][FAP] at VD = −0.01 V are 

shown in Figure 4.9. The −ID increases gradually until −VG = 0.5 V due to electrostatic doping. 

On the other hand, −ID increases rapidly from 0.6 to 1.1 V and plateaus from 1.1 to 1.4 V due to 

electrochemical doping. The relationship between n and −VG is shown in Figure 4.10; the 

relationship between x and −VG is shown in Figure 4.11. According to the Raman results, polarons 

are generated below 12%, and bipolarons form at x = 14%. The σ values were plotted against x 

for both [EMIM][TFSI] and [BMIM][TFSI] in Figure 4.7. The σ values increase gradually from 

x = 0 to 1.5% and then increase rapidly above x = 1.9%. The maximum σ value is 158 S cm−1, and 

this value was observed at x = 14% (−VG = 1.4 V). The μ values of the polarons were obtained 

from the data collected below x = 12% (n = 1.4×1021 cm−3, −VG = 1.3 V). The μ values of the 
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bipolarons cannot be obtained in this region. The μ values were plotted against x for both 

[EMIM][TFSI] and [BMIM][TFSI] in Figure 4.8. The mobilities of the polarons increased as the 

doping level increased and remained at high at values over 7.6%. The highest μ value of the 

polarons was 0.72 cm2 V−1 s−1 (x = 9.5%, n = 1.1×1021 cm−3). 

 

4.3.3 The relation between the carrier type and the doping level 

 

    The relation between carrier type and the doping level is shown in Figure 4.12. Bipolarons 

are formed firstly as the doping level increasing, and then bipolarons are formed. Bipolarons in 

the PBTTT-C16 film doped with [EMIM][FAP] are formed at 14%. On the other hand, bipolarons 

in the PBTTT-C16 films doped with [EMIM][TFSI] and [BMIM][TFSI] are formed at 4.5 and 

7.3%; bipolarons are dominant above 9.9 and 11%, respectively. Thus, the bipolaron formation 

depends on dopant anions.  

Molecular structures and volumes of [FAP]− and [TFSI]– were calculated with the DFT 

method based on the B3LYP/6-31++G(d,p) level using Gaussian 09 [18]. The calculated 

structures of anions are shown in Figure 4.13. The volumes of [FAP]− and [TFSI]– are 310 and 

223 Å3, respectively. The volume of [FAP]− is larger than [TFSI]–. Bipolarons in PBTTT-C16 

doped with [FAP]− are formed at higher doping level than [TFSI]–. Therefore, bipolaron formation 

may be sensitive to the size of anion. Two charges of a bipolaron are localized over several 

thiophene rings. Two counter anions exist near the bipolaron. The charge localization stabilizes a 

bipolaron formation. [FAP]− anions are localized in a large region than [TFSI]– anions because of 

the size. Thus, the stabilization originating from charge localization for [FAP]− anions is smaller 

than that for [TFSI]– anions.  

 

4.4 Conclusion 

 

    Carrier formation in ILGTs fabricated with [EMIM][TFSI] and [EMIM][FAP] was observed 

using Raman spectroscopy. The mobilities of polarons and bipolarons were evaluated using 

electrochemical measurements. The highest μ values of the polarons and bipolarons in the ILGT 

fabricated with [EMIM][TFSI] were 1.3 cm2 V−1 s−1 (x = 3.2%, n = 6.4×1020 cm−3) and 0.56 cm2 

V−1 s−1 (x = 9.9%, n = 1.2×1021 cm−3), respectively. The highest μ value of the polarons in the 

ILGT fabricated with [EMIM][FAP] was 0.72 cm2 V−1 s−1 (x = 9.5%, n = 1.1×1021 cm−3). These 
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values are on the same order as those in the ILGTs fabricated with [BMIM][TFSI]. Polarons doped 

with [TFSI]− are formed below x = 3.2%. Bipolarons doped with [TFSI]− begin to form at x = 

4.5% and are the dominant carriers above x = 9.9%. Polarons doped with [FAP]− are formed below 

12%. Bipolarons doped with [FAP]− begin to form at x = 14%. The presence of [FAP]– ions 

impeded bipolaron formation because of their larger size relative to [TFSI]− ions. The carrier 

formation can be controlled by choosing an appropriate ionic liquid, and careful selection helps 

to improve the electrical properties of ILGTs. 
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Figure 4.1. The chemical structures of [EMIM][TFSI] and [EMIM][FAP] 
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Figure 4.2. Raman spectra of an ILGT with [EMIM][TFSI] 

(* indicates the bands of [EMIM][TFSI]) 
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Figure 4.3. Raman spectra of an ILGT with [EMIM][FAP] 

(* indicates the bands of [EMIM][FAP]) 
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Figure 4.4. Transfer characteristics of an ILGT fabricated with [EMIM][TFSI] 
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Figure 4.5. Plots of n versus −VG for an ILGT fabricated with [EMIM][TFSI] 
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Figure 4.6. Plots of x versus −VG for an ILGT fabricated with [EMIM][TFSI] 
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Figure 4.7. Conductivities of PBTTT-C16 films doped with three ionic liquids 

(P indicates polarons, and BP indicates bipolarons) 
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Figure 4.8. Mobilities of polarons and bipolarons in PBTTT-C16 doped with three ionic liquids 
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Figure 4.9. Transfer characteristics of an ILGT with [EMIM][FAP] 
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Figure 4.10. Plots of n versus −VG for an ILGT fabricated with [EMIM][FAP] 
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Figure 4.11. Plots of x versus −VG for an ILGT fabricated with [EMIM][FAP] 
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Figure 4.12. Plots of carrier types versus doping levels for ILGTs 
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Figure 4.13. Calculated molecular structures 
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5. Conclusion 

    In this thesis, I investigated the relationship between polaron and bipolaron generation and 

conductivities, doping levels and mobilities in ILGTs fabricated with PBTTT using Raman 

spectroscopy and electrochemical measurements. 

    In Chapter 2, I investigated the ILGT fabricated with PBTTT-C14 and [BMIM][TFSI]. 

Raman spectra of positive polarons and bipolarons of PBTTT-C14 were identified according to 

the optical absorption spectra of the films doped with FeCl3. Polaron and bipolaron formations in 

the ILGT were elucidated using the Raman spectra of polarons and bipolarons. The conductivities, 

doping levels and mobilities in the ILGT were obtained using electrochemical measurements. The 

highest mobility of polarons (4.2 × 10−2 cm2 V−1 s−1) was observed at the doping level equaling to 

1.5%; the highest mobility of bipolarons (0.36 cm2 V−1 s−1) was observed at the doping level 

equaling to 8.2%. Bipolarons having a high mobility is quite unique, and it indicates that 

bipolarons can be used as effective carriers for ILGTs. 

    In Chapter 3, I investigated the ILGTs fabricated with unannealed and annealed PBTTT-C16 

films. The crystalline contents of the PBTTT-C16 films were evaluated using Raman spectroscopy. 

The Raman spectra of positive polarons and bipolarons of PBTTT-C16 were identified according 

to the optical absorption spectra of the films doped with FeCl3. The bipolarons of PBTTT-C16 

also showed high mobilities. The high crystalline contents of annealed PBTTT-C16 resulted in 

bipolarons with slightly improved mobilities. Carrier formation was influenced by the crystalline 

contents. The bipolarons in annealed PBTTT-C16 were formed at 3.4% comparing to in 

unannealed PBTTT-C16 at 7.3%. It indicates that polarons are stable in the disordered structure 

of PBTTT-C16. 

    In Chapter 4, I investigated the relationship between carrier generation and the size of the 

anions of an ionic liquid. ILGTs fabricated with [EMIM][TFSI] and [EMIM][FAP] were 

evaluated using Raman spectroscopy and electrochemical measurements. Bipolarons in the 

PBTTT-C16 films doped with [EMIM][FAP] and [EMIM][TFSI] are formed at 14 and 4.5%, 

respectively. The large anions prevented the bipolaron formation in the ILGTs, indicating that 

carrier formation can be controlled by choosing the anion in ionic liquids. 

    The investigations in this thesis show that the combination of Raman spectroscopy and 

electrochemical measurements is a powerful tool for elucidating carrier formation in organic 

semiconductors in ILGTs. Bipolarons can be used as an effective carrier, and carrier formation 

can be controlled. These results will help advance the field of organic electronics, organic 
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spintronics and organic magnetic functionality. For example, polarons are used as a carrier for 

spin currents, whereas bipolarons are used as spinless carriers for electric currents. In addition, it 

has been reported that bipolarons affect the properties of not only transistors but also solar cells, 

light-emitting diodes and magneto resistive sensors. However, these mechanisms have not 

elucidated completely because they were investigated using ESR. This thesis helps to understand 

and elucidate the fundamental mechanism of the effect of bipolaron in several organic devices. 

Further research and development will lead to the preparation of flexible, low-cost and novel 

organic devices based on ILGTs.  
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