構造化学研究室 (伊藤研究室)

研究レビュー

(1) 顕微ラマン分光法による SERS-不活性銀基板および SERS-活性銀基板 でのジアセチレン誘導体 Langmuir-Blodgett 膜の重合過程の比較研究

表面増感ラマン(SERS)不活性な銀基 板(厚さ=ca.1000A)と SERS-活性な銀島 状フィルム(厚さ=ca.60A)上に層数を 3-9 の範囲で変化させつつ作成した 10,12pentacosadiynoic acid(DA) O Langmuir-Blodgett(LB)膜の 532-nm レーザー光照射 による重合過程を生成ポリジアセチレン の Blue Phase(B 相)と Red Phase(R 相) の C=C 伸縮バンド強度の時間変化をもと に解析した。 SERS-不活性銀基板上の DA-LB 膜における-110℃での重合過程 の解析から B 相の生成速度と B→R 相転 移速度が DA-LB 層の増加とともに増大 することが分かった。とくに DA-LB(3) について-120~-100℃の範囲での重合過 程の定量的解析を行った結果, DA→B 相→R 相の逐次変化の速度定数を決定し、 層数の増加による反応速度の増大が表面 の抑制効果が減少することで説明される と結論した。SERS-活性基板上に作成し た DA-LB 膜では照射直後に B 相の生成 がほぼ完了するなど, 重合機構には SERS 不活性基板の DA-LB 膜と著しい 相違が観測された。特に DA-LB(3)での 重合過程の温度依存性を詳しく解析した 結果, B 相→R 相 と B 相→R 相→D 相の 2つの反応過程が存在することが明らか にされた(D 相は光分解生成物。)。後者 は SERS-活性基板上で島状部分のいわゆ る"hot spot"での反応過程に帰属された。

このサイトでの $B\rightarrow R$ 反応の活性化エンタルピーが SERS-不活性基板では 24.8 kJ/mol であるのに対し SERS-活性基板では 8.9 kJ/mol で著しく減少することも分かった。

(2) 偏光変調赤外分光法を用いた L-, DL-リジン誘導体の水表面単分子膜の構 造解析

偏光変調赤外分光(PM-IR)装置を作成して palmitoyl-L-および DL-lysine (L-PL, DL-PL)の水表面単分子膜の IR スペクトルの表面圧依存性を測定した。 1640cm¹と 1550cm¹付近に観測される amide I および II バンドの相対強度からペプチド結合とその水素結合鎖の配向を明らかにする新しい計算手法を開発して水表面で L-PL と DL-PL が形成する水素結合鎖の構造や配向の相違を明らかにした。

(3) 和周波発生(SFG)分光法による poly(ethylene oxide)(PEO)修飾リン脂質 を含む水表面単分子膜の構造解析

和周波発生(SFG)分光法を用いて水表面に展開した、PEO で修飾されたdistealoyl phosphatidyl ethnolamin (DSPE-EO₄₅)とDSPEの混合単分子膜(DSPE-EO₄₅のモル分率を 1-12 %の範囲で変化させた。)の 3500-3000cm⁻¹ 領域(主として結合水の OH 伸縮振動バンドが観測される)と 3000-2800cm⁻¹ 領域(主として DSPEの CH 伸縮振動バンドが観測される)の SFG スペクトルの膜圧依存性を解析して DSPE-EO₄₅のモル分率と膜圧による(i) 単分子膜中での PEO 鎖の配向と結合水の構造変化、(ii)DSPE の配向と構造変

論文と著書

* 原著論文

- 1. "Infrared external reflection absorption spectroscopic study on the structures of the Langmuir-Blodgett films of palmitoyl-L and DL-lysine on a Ge plate",
 - H. Yasukawa, C. Ohe and K. Itoh,
 - J. Mol. Str. 735-736, 53-62 (2005).
- **2.** "Raman microscopic study on polymerization and degradation processes of a diacetylene derivatives at surface enhanced Raman active scattering active surfaces. 1. Reaction kinetics".
 - K. Itoh, T. Nishizawa, J. Yamagata, M. Fujii, N. Osaka, and I. Kudryashov,
 - J. Phys. Chem. B, 109, 264-270(2005).
- **3.** "Raman microscopic study on polymerization and degradation processes of a diacetylene derivatives at surface enhanced Raman active scattering active surfaces. 2. Confocal Raman microscopic observation of polydiacetylene adsorbed on active sites",
 - K. Itoh, I. Kudryashov, T. Nishizawa, J. Yamagata, M. Fujii, and N. Osaka,
- J. Phys. Chem. B, 109(1), 271-276(2005).

分光化学研究室 (古川研究室)

研究レビュー

(1) 振動分光法と密度汎関数法計算による p-ターフェニルの立体構造解析

p-ターフェニルの安定構造、赤外・ラマンスペクトルを、B3LYP/6-311G**レベルの密度汎関数法で計算し、p-ターフェニルの溶液、融解状態における赤外・ラマンスペクトルを解析した.観測スペクトルは、リング間 CC 結合回りの2つの回転異性体、らせん構造(D_2)と交互ねじれ構造(C_{2h})、が共存することで説明できた.らせん構造の 518 と 375 cm^{-1} バンドが、交互ねじれ構造の 483 と 329 cm^{-1} バンドに、それぞれ対応しており、これらのバンド波数は回転異性に鋭敏であることがわかった.

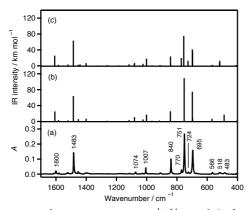


図 1. p-ターフェニルの赤外スペクトル: (a) 実測スペクトル (CCl₄溶液); (b) 交互ね じれ構造と(c)らせん構造の計算スペクトル. 1. J. Mol. Struct., **735/736**, 11 (2005).

(2) 有機発光ダイオードにおけるホール輸送材料 NPD の結晶/非晶マーカー

有機発光ダイオード (LED) においてホール輸送材料として使用されている N,N'-di-1-naphthaleyi-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) のラマンスペクトルでは、結晶で 1609, 1288, 1198 cm⁻¹、非晶状態で 1607, 1290, 1192 cm⁻¹であった(図 2). 非晶状態のバンド幅は結晶状態よりも広かった. これらのバンドは、NPD の結晶/非晶状態のマー

カーとなる. ラマン分光は NPD の結晶 化(LED 劣化の一因)の検出に有用な 実験法である.

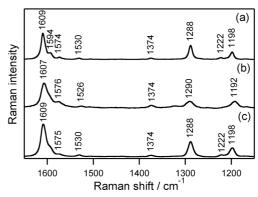


図 2. NPD のラマンスペクトル: (a) 粉末結晶; (b) 蒸着膜(非晶); (c) 蒸着後 14 d の薄膜, 結晶化がみられる.

2. Chem. Phys. Lett., 405, 330 (2005).

(3) 高分子発光ダイオードの動作による PEDOT-PSS のラマンスペクトル変化

ITO/PEDOT-PSS/PF8-F8BT/Li-Al 構造の LED のラマンスペクトルを, 励起波長 633 nm で測定した. LED の初期輝度は 10,000 cd/m²であり, 30 min 点灯後にラマンスペクトルを測定したところ, PEDOT のラマンバンドの強度が増加した. この結果は, 点灯により PEDOT 鎖が還元されたことを示している. PEDOT 鎖の還元は高分子 LED の寿命を短くする要因の一つであると思われる.

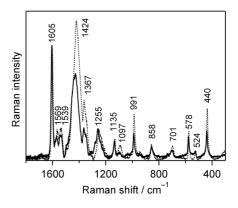


図 3. LED のラマンスペクトル: 実線, 動作前; 点線, 動作後.

3. Chem. Phts. Lett., 412, 395 (2005).

論文など

● 原著論文

1. "Conformational Analysis of p-Terphenyl by Vibrational Spectroscopy and Density Functional Theory Calculations"

K. Honda and Y. Furukawa

J. Mol. Struct., 735/736, 11–19 (2005).

2. "Crystalline/Amorphous Raman Markers of Hole-Transport Material NPD in Organic Light-Emitting Diodes"

T. Sugiyama, Y. Furukawa, and (H. Fujimura) *Chem. Phys. Lett.*, **405**(4–6), 330–333 (2005).

3. "Raman Spectral Changes of PEDOT-PSS in Polymer Light-Emitting Diodes upon Operation"

S. Sakamoto, M. Okumura, Z. Zhao, and Y. Furukawa *Chem. Phys. Lett.*, **412**(4–6), 395–398 (2005).

4. "IR Study on Stacking Manner of Peptide Nanorings in Peptide Nanotubes" Y. Nagai, T. Nakanishi, H. Okamoto, K. Takeda, Y. Furukawa, (K. Usui), and (H. Mihara)

Jpn. J. Appl. Phys., 44(10), 7654–7661 (2005).

5. "Structural Study of Thin Films of Neutral and Potassium-Doped Oligophenylenes on Cu(100)"

Y. Hosoi, (N. Koch), (Y. Sakurai), (H. Ishii), (T.U. Kampen), (G. Salvan), (D.R.T. Zahn), (G. Leising), (Y. Ouchi), and (K. Seki) *Surf. Sci.* **589**(1–3), 1023–1031 (2005).

- 6. "Infrared Spectroscopy of Pentacene Thin Film on SiO₂ Surface" Y. Hosoi, (K. Okamura), (Y. Kimura), (H. Ishii), and (M. Niwano) *Appl. Surf. Sci.*, **244**(1–4), 607–610 (2005).
- 7. "Study of the Interaction of Tris-(8-hydroxyquinoline) Aluminum (Alq₃) with Potassium Using Vibrational Spectroscopy: Examination of the Possible Isomerization upon K-Doping"

 (V. Sakurai) (T. Vokovama) V. Hosoi (H. Ishii) (V. Quchi) (G. Salvan) (A.

(Y. Sakurai), (T. Yokoyama), Y. Hosoi, (H. Ishii), (Y. Ouchi), (G. Salvan), (A. Kobitski), (T. U. Kampen), (D. R. T. Zahn), (K. Seki) *Synth. Met.*, **154** (1–3), 161–164 (2005).

● 総説と本

1. 「高分子の構造」,「高分子の機能」 古川行夫 物質環境科学 I ー分子から機能性物質・生体までー,放送大学大学院教材 (田隅三生,濱田嘉昭共編),放送大学教育振興会,東京,pp. 105-135, 2005.

2. 「フーリエ変換型分光器」

古川行夫

第 5 版実験化学講座 9 物質の構造 I 分光上, (日本化学会編), 丸善, 東京, pp. 67–78, 2005.

3. 「赤外吸収スペクトル測定」

古川行夫

第 5 版実験化学講座 9 物質の構造 I 分光上,(日本化学会編),丸善,東京,pp. 411-416, 2005.

招待・依頼講演

- 1. "Voltage-Induced Infrared Absorption from Polymer Field-Effect Transistors" The 3rd International Conference on Advanced Vibrational Spectroscopy, August 14–19, 2005, Lake Lawn Conference Center, Delavan, Wisconsin, USA.
- 2. 「高分子電子デバイスの赤外・ラマン分光」 東京工業大学資源化学研究所講演会,2005年11月17日,資源化学研究所, 長津田.
- 3. 「有機電界効果トランジスタの赤外分光」 千葉大学工学系研究科 21 世紀 COE コロキュウム, 2005 年 11 月 21 日, 千葉 大学, 西千葉.
- 4. 「赤外分光法による有機 TFT の構造解析」 有機半導体におけるキャリアの伝導機構解明,光・電子物性と界面電子構造 の評価講習会,2005 年 11 月 24 日,ゆうぽうと,五反田.
- "Infrared and Raman Spectroscopy of Polymer Light-Emitting Diodes and Field-Effect Transistors"
 Pacific Polymer Conference IX, December 11–14, 2005, The Westin Maui, Kaanapari, Hawaii, USA.

● 競争的資金

- 1. 文部科学省科学研究費補助金 基盤研究(A)「顕微ラマン分光法を用いた有機 薄膜多層構造における電気化学現象の解明と物性制御」(代表)
- 2. 文部科学省科学研究費補助金 基盤研究(C)(企画調査)「エレクトロニクス 有機界面幾何工学」(分担)
- 3. 文部科学省科学研究費補助金 学術創成研究「高周期典型元素不飽和化合物の化学:新規物性・機能の探求」(分担)

研究レビュー

(1)高精度な non-BO 理論:TRF-NOMO 法

電子と原子核の波動関数を同時に求める ab initio NOMO 法の高精度化のために、並進および回転運動を分離した TRF-NOMO/HF 法を開発した。ここでは、全 Hamiltonian から並進と回転運動の演算子を差し引いたものを用いた。表 1 には従来の NOMO 法と TRF-NOMO 法によって得られた H_2 , D_2 , T_2 分子の結合距離を示してある。並進と回転を分離することで、実験値との一致が得られた。

Table 1. Bond length of H_2 , D_2 , and T_2 molecules calculated by the NOMO and TRF-NOMO methods.

	NO	MO	TRF-NOMO		exptl.
H ₂	0.7664 (0.0130)	0.7533 (0.0023)	0.7510
D_2	0.7567 (0.0076)	0.7491 (0.0008)	0.7483
T_2	0.7512 (0.0029)	0.7484 (0.0015)	0.7469

[5] J. Chem. Phys., **122** (22), 164101 1-10 (2005).

(2)結合エネルギー密度解析の開発と応用

量子化学計算により得られた全エネルギーを構成原子ごとに分割する解析手法であるエネルギー密度解析(EDA)を結合領域へと拡張し、化学結合や分子間相互作用をより詳細に解析する結合エネルギー密度解析(Bond-EDA)法を開発した。エタンおよびエチレンの結合解離過程を Bond-EDA を用いて検討し、この過程のエネルギー変化を定量的に評価した。

[3] J. Theor. Comp. Chem., 4 (1), 317-332 (2005).

(3)抗 HIV-1 活性 Calophyllum クマリンに関するエネルギー密度を用いた主成分分析

Calophyllum クマリン化合物のうち幾つかは強い抗 HIV-1 活性を示すが、それらと似た構造の化合物でも活性が弱いものもある。25 種類のCalophyllum クマリンに EDA を適用し、共通骨格中の原子のエネルギー密度を用いて主成分分析を行った。25 種類の化合物は置換基や分子骨格の違いによって6グループに大別され、置換基効果より分子骨格の方が抗 HIV-1 活性に大きく影響していることが明らかとなった。

[6] Chem. Lett., 34 (6), 844-845 (2005).

(4)エネルギー移動ダイナミクスに関する理論 的解析手法の提案

Ab initio 分子動力学シミュレーションにより反応 ダイナミクスを追跡し、その結果からエネルギー 移動に関与しているモードを決定する手法を開 発し、エネルギー移動スペクトログラム(ETS)と 名付けた。CO2 衝突反応に ETS を適用した結 果、衝突に伴うエネルギー移動には、逆対称伸 縮振動が関与していることが明らかとなった。

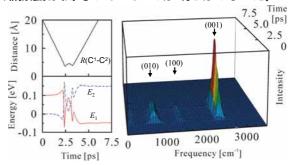


Fig. 1. ETS for the AIMD simulation of the collision reaction between two CO₂.

[8] J. Chem. Phys., **123** (3), 034101 1-9 (2005).

(5)電子反発積分の高速計算

電子状態計算の計算時間における大きなボトルネックの一つに電子反発積分の計算がある。この高速化を図るアルゴリズムとして、随伴座標展開-漸化関係式(ACE-RR)を導出し、対応する計算プログラムを開発した。この手法を用いると、計算時間は従来法に比べて最大 7 倍程度高速化されることが分かった。

Table 2. CPU time (in seconds) for first direct SCF cycle on taxol and valinomycin. CPU-time ratios are shown in parentheses.

Molecule	Basis set	CPU time for first direct SCF cycle			
Wioiccuic		ACE-RR	Pople-Hehre	Dupuis-Rys-King	
Taxol	STO-6G	631.4	814.0 (1.29)	4855.0 (7.69)	
$C_{47}H_{51}NO_{14}$	6-31G	502.6	572.6 (1.14)	1219.2 (2.43)	
Valinomycin	STO-6G	1713.0	2228.6 (1.30)	12875.1 (7.52)	
$C_{54}H_{90}N_6O_{18}\\$	6-31G	1587.7	1833.5 (1.15)	2974.5 (1.87)	

[2] J. Theor. Comp. Chem., 4 (1), 139-150 (2005).

論文と著書

● 原著論文

- 1. "Theoretical study on excitation dynamics of 5-dibenzosuberene and its derivatives",
 - H. Nakai, T. Baba,
 - J. Mol. Struct., 735-736, 211-216 (2005).
- 2. "Practical performance assessment of accompanying coordinate expansion recurrence relation algorithm for computation of electron repulsion integrals",
 - M. Katouda, M. Kobayashi, H. Nakai, S. Nagase,
 - J. Theor. Comp. Chem., 4 (1), 139-150 (2005).
- 3. "Extention of energy density analysis to treating chemical bonds in molecules", H. Nakai, Y. Kikuchi,
 - J. Theor. Comp. Chem., 4 (1), 317-332 (2005).
- 4. "Short-time Fourier transform analysis of ab initio molecular dynamics simulation: Collision reaction between CN and C₄H₆",
 - M. Tamaoki, Y. Yamauchi, H. Nakai,
 - J. Comp. Chem., 26 (5), 436-442 (2005).
- 5. "Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory",
 - H. Nakai, M. Hoshino, K. Miyamoto, S. Hyodo,
 - J. Chem. Phys., 122 (22), 164101 1-10 (2005).
- 6. "Principal component analysis with energy density of Calophyllum coumarins",
 - M. Takeuchi, A. Nakata, H. Nakai,
 - Chem. Lett., **34** (6), 844-845 (2005).
- 7. "Energy density analysis of embedded cluster models for an MgO crystal",
 - Y. Kawamura, H. Nakai,
 - Chem. Phys. Lett., 410 (1-3), 64-69 (2005).
- 8. "Hybrid approach for ab initio molecular dynamics simulation combining energy density analysis and short-time Fourier transform: Energy transfer spectrogram", Y. Yamauchi, H. Nakai,
 - J. Chem. Phys., 123 (3), 034101 1-9 (2005).
- 9. "Density functional theory study on the oxidation mechanism of aldehydes as reductants for an electroless deposition process",
 - M. Shimada, K. Sakata, T. Homma, H. Nakai, T. Osaka,
 - Electrochimica Acta, **51** (5), 906-915 (2005).

- 10. "Characterization of strained Si wafer surface by density functional theory analysis",
 - K. Sakata, T. Homma, H. Nakai, T. Osaka, *Electrochimica Acta*, **51** (5), 1000-1003 (2005).
- 11. "Synthesis of the pivalamidate-bridged pentanuclear platinum(II, III) linear complexes of Pt-Pt bondings",
 - K. Matsumoto, S. Arai, M. Ochiai, W. Chen, A. Nakata, H. Nakai, S. Kinoshita, *Inorg. Chem.*, **44** (23), 8552-8560 (2005).
- 12. "Reply to "Comment on 'Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory" [J. Chem. Phys. 122, 164101 (2005)]",
 - H. Nakai, M. Hoshino, K. Miyamoto, S. Hyodo,
 - J. Chem. Phys., 123 (23), 237102 1 (2005).
- 13. "Isotope effects in the reaction of H⁺(H₂O)₂/D⁺(D₂O)₂ with acetone/ dimethylsulfoxide",
 - Y. Kawai, Y. Okada, S. Yamaguchi, K. Takeuchi, Y. Yamauchi, H. Nakai,
 - J. Mass. Spectrom. Soc. Jpn., 53 (6), 305-308 (2005).
- 14. "Energy Density Analysis of Kohn-Sham DFT Method and Its Applications",
 - T. Baba, Y. Yamauchi, Y. Kikuchi, Y. Kurabayashi, H. Nakai,
 - *Bull. Soc. Discrete Variational Xα*, **18** (1), 7-19 (2005).

● 招待講演

- 1. "分子科学者のための密度汎関数法 概念と使い方", 第 1 回計算分子科 学集中セミナー (岡崎), 2005 年 12 月 26~28 日.
- 2. "Development of *ab initio* nuclear orbital plus molecular orbital theory and its applications", H. Nakai, *Pacifichem2005* (Hawaii), December 15-20, 2005.
- 3. "高性能量子化学計算手法の開発とその検証", CAMM フォーラム (東京), 2005 年 8 月 5 日.
- 4. "Kohn-Sham DFT 法に対するエネルギー密度解析とその応用", 第 18 回 DV-Xα 研究会, (東京), 2005 年 8 月 3 ~ 5 日.
- 5. "高性能量子化学計算機環境の構築とその検証~中井研究室 10 年の歩み~", 豊田中央研究所 講演会 (愛知), 2005 年 7 月 4 日.
- 6. "Ab initio molecular dynamics (AIMD) 法による化学反応の追跡", 新化学 発展協会 講演会 (東京), 2005 年 6 月 21 日.
- 7. "Development of accurate non-Born-Oppenhemer theory and its applications", H. Nakai, *1st NAREGI International Nanoscience Conference* (Nara), June

- 14-17, 2005.
- 8. "Development of accurate non-Born-Oppenheimer theory", 第 11 回日韓合同 シンポジウム (岡崎), 2005 年 3 月 16~17 日.

● 国際学会

- "Theoretical study of proton tunneling reactions using *ab initio* NOMO theory",
 K. Sodeyama, M. Hoshino, M. Kobayashi, and H. Nakai, *Pacifichem2005* (Hawaii), December 15-20, 2005.
- 2. "Development of a new hybrid functional for precise description of core excitations", A. Nakata, Y. Imamura, and H. Nakai, *Pacifichem2005* (Hawaii), December 15-20, 2005.
- 3. "Collision reactions between CN and C_nH_m: short-time Fourier transform analysis of AIMD simulation", M. Tamaoki, D. Sakura, Y. Yamauchi, and H. Nakai, *Pacifichem2005* (Hawaii), December 15-20, 2005.
- 4. "Energy transfer mechanism in chemical reactions using *ab initio* molecular dynamics simulation", M. Tamaoki, Y. Yamauchi, T. Atsumi, and H. Nakai, *Pacifichem2005* (Hawaii), December 15-20, 2005.
- 5. "Energy Density Analysis", H. Nakai, *Czech-Japan Theoretical Chemistry Symposium* (Prague), September 14-16, 2005.
- 6. "Large-scale electronic structure calculation using divide-and-conquer method", M. Kobayashi, T. Akama, and H. Nakai, *1st NAREGI International Nanoscience Conference* (Nara), June 14-17, 2005.
- 7. "Novel Evaluation Method for the Reactivity of S_N2 Reactions Employing Bond-EDA", J. Suzuki, M. Ishii, Y. Kikuchi, and H. Nakai, *1st NAREGI International Nanoscience Conference* (Nara), June 14-17, 2005.
- 8. "Ab initio NOMO study for proton tunneling reaction", K. Sodeyama, M. Hoshino, M. Kobayashi, and H. Nakai, *1st NAREGI International Nanoscience Conference* (Nara), June 14-17, 2005.
- 9. "Development of a new hybrid exchange-correlation functional for core excitations", A. Nakata, Y. Imamura, and H. Nakai, *1st NAREGI International Nanoscience Conference* (Nara), June 14-17, 2005.
- 10. "Core-excitation energy calculations of molecules by Green's function techniques", T. Otsuka, Y. Imamura, and H. Nakai, *1st NAREGI International Nanoscience Conference* (Nara), June 14-17, 2005.
- 11. "Acceleration of self-consistent-field convergence in *ab initio* molecular dynamics simulation", T. Atsumi and H. Nakai, *1st NAREGI International*

- Nanoscience Conference (Nara), June 14-17, 2005.
- 12. "Elimination of translational and rotational motions in *ab initio* nuclear orbital plus molecular orbital theory", M. Hoshino, K. Miyamoto, S. Hyodo, and H. Nakai, *1st NAREGI International Nanoscience Conference* (Nara), June 14-17, 2005.
- 13. "Development of energy density analysis", H. Nakai, *WATOC 2005* (Cape Town), January 16-21, 2005.

競争的資金

- 1. 科学研究費補助金 萌芽研究「電子および原子核波動関数の同時決定法の開発とその応用」(研究代表, 平成 16-18 年度).
- 2. 早稲田大学理工学総合研究センター・プロジェクト研究「量子化学計算に特化した高性能計算機環境の構築とその応用」(研究代表, 平成 16-18 年度). その他
- 1. NAREGI ナノサイエンス実証研究『機能性ナノ分子』(グループリーダー:永瀬茂)「固体表面のナノ構造に対する量子化学計算」(分担研究代表,平成15-17年度).
- 2. ハイテクリサーチセンター研究プロジェクト 第1期継続『分子設計による機能性新素材』(研究代表:伊藤紘一)「機能性新素材の開発に向けた量子化学的手法の開発とその応用」(研究分担,平成13-18年度).
- 3. 21 世紀 COE 『実践的ナノ化学教育研究拠点』(プロジェクト代表: 竜田邦明) 分子ナノ科学「ナノ分子設計に向けた量子化学的手法の開発とその応用」 (研究分担、平成 15-18 年度)
- 4. 特定課題(B)「固体及びクラスター表面反応のダイナミクスに関する理論的研究」(研究代表、平成 17 年度).
- 5. 特定課題(B)「酸化チタン表面上での光エネルギー変換及び光触媒作用の電子的機構に関する理論的研究」(研究代表, 平成 17 年度).

構造有機化学研究室 (新田研究室)

<u>研究レビュー</u>

(1) 2-クロロトロポンと 2 等量の 6-フェ ニルアミノウラシルを 'BuNH, 存在下, EtOH 中室温で 48 時間反応させること により、付加体を得た. これは DDO ま たは好気条件下の光照射により酸化的に 閉環し、1a+BF₄と1b+BF₄を与えた. そ の際, 用いる溶媒に依存して, **1a**⁺と **1a**⁺ の生成比が変化することを見出し,分子 軌道計算によりこれを説明することがで きた. この混合物は CH₂CN/AcOEt から 再結晶することにより, それぞれを単一 に得ることが出来た.また、フラン類似 体 2a⁺·BF₄と 2b⁺·BF₄についても同様に 合成することが出来た. X線結晶解析に より、1a*および1b*の詳細な構造を明ら かにした. 紫外可視分光法で得られた 1a+ および $1b^+$ の pK_p 値はそれぞれ 12.6 と 12.6 であり、 $2a^{+}$ および $2b^{+}$ の pK_{R+} 値は それぞれ 10.9 と 10.7 であるため、2つ めのピロロピリミジン環の縮環が効果的 にカチオンを安定化していることが明ら かとなった. サイクリックボルタンメト リーにおいて,カチオン 1a,b*および **2a,b**⁺/t, -0.77 \geq -1.00 (V vs Ag/AgNO₃) \geq いう還元電位を示した. なお、1a⁺はこ の系で初めての可逆な還元波を示した. NaBH₄を用いて 1a⁺·BF₄から誘導される ジヒドロ体を用いたカルボニル化合物の 還元を行い、対応するアルコール類を得 ることが出来た.これは、非ベンゼン系 芳香族化合物により NADH 型還元反応 を行った初めての例であり、ヘテロアズ レン類の新たな可能性を示すものである. 1. J. Org. Chem., 70, 9780-9788 (2005).

(2) 2-アミノ-1.3-ジアザアズレン 3 から 誘導されるイミノホスホラン 4 とアリー ルイソシアネート類との反応により、ア ンギュラー位に窒素を有する 3-アリル シクロヘプタ[4,5]イミダゾ[1,2-a]-1,3,5-トリアジン-2,4(3H)-ジオン **7a,b** および そのイミン誘導体 **8a,b** を, 簡便に合成 することが出来た. X 線結晶解析および 分子軌道計算により、8a および8b の詳 細な構造を明らかにした. サイクリック ボルタンメトリーにおいて, 7a,b およ び **8a,b** は、-1.12 と-1.24 (V vs Ag/AgNO₃) という還元電位を示した. さらに 7a を メチル化して得られるカチオンの pK_{R+} 値は 6.8 であり、還元電位は-0.66 (V vs Ag/AgNO。)であった. 反応性を明らかに するために, 7a と求核試薬, すなわち ヒドリドとの反応を検討し、6,8,10 位で 反応が進行することを明らかにした. ま た, 空気存在下, 7a,b および 7a をメチ ル化したカチオンはいくつかのアミン類 に対し,酸化反応性を示し,対応する酸 化生成物を 400-11818%の収率で与え, 酸化触媒としての機能を有することを明 らかにした.

5. Tetrahedron, 61, 6073-6081 (2005).

論文と著書

● 原著論文

- 1. Novel synthesis, properties, and NAD⁺-NADH type redox ability of 1,3-dimethylcyclohepta[4,5]pyrrolo[2,3-d]pyrimidine-2,4(1,3H)-dionylium ions annulated with additional pyrrolo[2,3-d]pyrimidine-1,3(2,4H)-dione and furan analogue, and their hydride adducts: S. Naya, J. Nishimura and M. Nitta, *J. Org. Chem.*, 70, 9780-9788 (2005).
- 2. Synthesis and properties of 5-[bis(1-heteroazulen-3-yl)methylidene]pyrimidine-2,4,6(1,3,5*H*)-triones: S. Naya, K. Yoda and M. Nitta, *Tetrahedron*, *61*, 8616-8624 (2005).
- 3. Synthesis and properties of 4,9-methanoundecafulvenes and their transformation to 3-substituted 7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1H,3H)-diones: photo-induced autorecycling oxidizing reaction toward amines: S. Naya, Y. Yamaguchi and M. Nitta, *Tetrahedron*, 61, 7384-7391 (2005).
- 4. Synthesis and properties of 3-arylcyclohepta[4,5]pyrrolo[1,2-*a*]-1,3,5-triazine-2,4(3*H*)-diones and related compounds: photo-induced autorecycling oxidation of some amines: M. Nitta, T. Morito, Y. Mitsumoto and S. Naya, *Heterocycles*, 65, 1629-1639 (2005).
- 5. Synthesis and properties of 3-arylcyclohepta[4,5]imidazo[1,2-*a*]-1,3,5-triazine-2,4(3*H*)-diones and related compounds: photo-induced autorecycling oxidation of some amines: M. Nitta, D. Ohtsuki, Y. Mitsumoto and S. Naya, *Tetrahedron*, *61*, 6073-6081 (2005).
- 6. Novel photo-induced oxidative cyclization of 1,3-dimethyl-5-(1-arylmethylidene)-pyrimidine-2,4,6(1,3,5*H*)-triones: synthesis and properties of areno[5,6]pyrano [2,3-*d*]pyrimidine-2,4(1,3*H*)-dionylium ions and their photo-induced autorecycling oxidizing reaction toward some amines: S. Naya, M. Miyagawa and M. Nitta, *Tetrahedron*, 61, 4919-4930 (2005).
- 7. Novel synthesis, static and dynamic properties, and structural characteristics of 5-cyano[n](2,4)pyridinophane-6-ones (n = 9-6) and their chemical transformations: M. Nitta, T. Sakakida, H. Miyabara, H. Yamamoto and S. Naya, *Org. Biomol. Chem.*, 3, 638 644 (2005).

化学合成法研究室(中田研究室)

<u>研究レビュー</u> キラルビルディングブロックスの創製

2 位にメチル基と保護されたヒドロキシメチル基を有する 1,3-シクロアルカンジオン類(1)の新合成法を見出し,生体触媒である baker's yeast および人工不斉触媒である CBS による 1 の高選と、不斉触媒である CBS による 1 の高選とが、不斉触媒である CBS による 1 の高選とが、本子が、大力である。とれるである。とれるでは、最終工程である。とれるでは、最終工程でションが、大力では、最終工程である。とれて、大力がで数十グラムの 1 を合成である。スケールアップも容易である。

橋頭位に芳香環を有する光学的に純粋な bicyclo[3.1.0]hexanone の触媒的不 斉合成

天然物にはベンジル位に不斉4級炭素を有するものが多くある。例えばセロトニン阻害活性を有する Sceletium alkaloid である(-)-mesembrine は不斉四級炭素に3,4-ジメトキシフェニル基が結合した興味深い構造をしている.

我々は独自に開発した α - ジアゾー β -ケトスルホン 3 の触媒的不斉分子内シクロプロパン化反応 (IMCP) により、橋頭位に芳香環を有するキラルな合成中間体 2 の合成を検討した. その結果、3(R=OMe) では 0% ee であるのに対し、3(R=OMe) では 93% ee となる興味深い知見を得た. 3(R=OBz) の絶対配置は X 線結晶構造解析により決定できた.

触媒的不斉 IMCP 反応に基づく光学的に 純粋な(-)-malyngolide の不斉全合成

(-)-malyngolide は不斉四級炭素を含む二つの不斉炭素を δ -ラクトン上に有し、小分子ながら抗菌活性等の生物活性を示すため多くの合成研究が報告されてきた.近年、(-)-malyngolide に類似した構造を有し、細胞毒性を示す(+)-tanikolide が単離されたことからこれらの不斉合成と構造活性相関が注目されている.

精密な構造活性相関研究には光学的に純粋な化合物が必要である。そこで我々は独自に開発した α -ジアゾ- β -ケトスルホン 4 の触媒的不斉分子内 IMCP 反応と生成物の再結晶により,不斉四級炭素を有する光学的に純粋な化合物 5 の創製に成功した。そして 5 から(+)-tanikolide の合成も可能な合成ルートで完全な立体制御により光学的に純粋な(-)-malyngolide の全合成に成功した。

● 原著論文

- 1. Preparation of New Chiral Building Blocks: Highly Enantioselective Reduction of Prochiral 1,3-Cycloalkanediones Possessing a Methyl Group and a Protected Hydroxymethyl Group at their C2 Position with Baker's Yeast or CBS Catalyst Watanabe, H.; Iwamoto, M.; Nakada, M. *J. Org. Chem.* **2005**, *70*, 4652-4658.
- 2. Asymmetric Catalysis of Intramolecular Cyclopropanation of 5-Aryl-1-arylsulfonyl-1-diazo-5-hexene-2-ones

Sawada, T.; Nakada, M. Adv. Synth. Catal. 2005, 347, 1527-1532.

3. Total Synthesis of (-)-Malyngolide via Catalytic Asymmetric Intramolecular Cyclopropanation

Miyamoto, H.; Iwamoto, M.; Nakada, M. Heterocycles, 2005, 66, 61 – 68.

● 国際会議のプロシーディングス

1. First total synthesis of antimitotic compound, (+)-phomopsidin

Suzuki, T.; Usui, K.; Miyake, Y.; Namikoshi, M.; Nakada, M.

The 229th ACS National Meeting (San Diego, CA, March 13-17, 2005), The American Chemical Society, 558 (2005).

2. Synthetic Studies on Taxol

Iwamoto, M.; Utsugi, M.; Kawada, H.; Miyano, M.; Nakada, M.

The 229th ACS National Meeting (San Diego, CA, March 13-17, 2005), The American Chemical Society, 559 (2005).

3. Synthetic studies on FR182877

Suzuki, T.; Matsumura, T.; Tanaka, N.; Nakada, M.

The 229th ACS National Meeting (San Diego, CA, March 13-17, 2005), The American Chemical Society, 560 (2005).

4. Synthetic studies on Erinacines

Masashi Takano, Akinori Umino, Syuhei Kashiwa, Masahisa Nakada The 229th ACS National Meeting (San Diego, CA, March 13-17, 2005), The American Chemical Society, 562 (2005).

● 招待講演

1. 「生物活性多環式天然物の合成研究」

日本薬学会第 125 年会シンポジウムー創薬を支える有機合成の最前線ー 日本薬学会,東京臨海副都心,東京,2005 年 3 月

2. 「生物活性多環式天然物の合成研究」

第36回中部化学関係学協会支部連合秋季大会

特別討論会:有機化学の新潮流

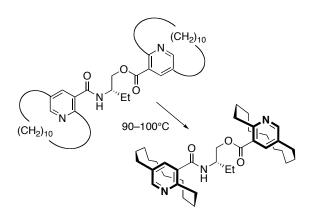
中部化学関係学協会,静岡,2005年9月

- 3. 「生物活性多環式天然物の効率的合成研究」 第 10 回 PharmaScience フォーラム 「創薬を志向した有機合成化学」 北海道大学大学院薬学研究科, 札幌, 2005 年 10 月
- 4. 「生物活性多環式天然物の合成研究」 平成17年度 後期(秋季)有機合成化学講習会 創薬を支える有機合成: 反応開発から生化学へのアプローチまで 有機合成化学協会,東京,2005年11月

● 依頼講演

1. 「生物活性多環式天然物の全合成研究」 文部科学省科学研究費補助金 特定領域研究「生体機能分子の創製」 第一回公開シンポジウム 京都,2005 年 11 月

機能有機化学研究室(鹿又研究室)


研究レビュー

(1) シクロファン効率合成法の開発

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

(2) シクロファン面不斉の立体制御

物が最大 97%の生成比で得られることを見いだした.これは複数の面不斉を同時立体制御した初めての例である.

(3) 面不斉集合分子の合成と不斉アル キル化反応の検討

論文など

● 原著論文

"Synthesis of Planar-Chiral Paracyclophanes via Samarium(II)-Catalyzed Intramolecular Pinacol Coupling"
 T. Ueda, N. Kanomata, and H. Machida Org. Lett. 2005, 7, 2365-2368.

● 総説と本

 「面不斉の多面同時立体制御法の開発」 鹿又宣弘 旭硝子財団財団助成研究成果報告,2005,01 02/167-01 02/176.

● 国際学会

- 1. "Synthesis of novel planar-chiral phase transfer catalysts and their asymmetric alkylation"
 - H. Nakamoto, N. Kanomata, F. Sudo, and S. Kouno *International Chemical Congress of Pacific Basin Societies*, Honolulu, May **2005**.
- 2. "Planar-chiral organocatalysts for asymmetric allylation of aldehydes"
 - J. Suzuki and N. Kanomata
 - International Chemical Congress of Pacific Basin Societies, Honolulu, May 2005.
- 3. "Highly enantioselective cyclopropanation with planar-chiral pyridinophanes" K. Sekine, N. Kanomata, and S. Yamashita *International Chemical Congress of Pacific Basin Societies*, Honolulu, May **2005**.
- 4. "Glycolysis-type oxidation of hemithioacetal derivatives with NAD⁺ analogues" N. Ogawa, T. Takazawa and N. Kanomata
 - International Chemical Congress of Pacific Basin Societies, Honolulu, May 2005.
- 5. "Planar-to-planar chirality transfer in the excited state: Enantiodifferentiating photoisomerization of (*Z*)-cyclooctenes sensitized by chiral [10]paracyclophanecarboxylates"
 - R. Maeda, T. Wada, T. Mori, S. Kouno, N. Kanomata and Y. Inoue *International Chemical Congress of Pacific Basin Societies*, Honolulu, May **2005**.

特許

1. 「面不斉ビピリジン化合物, その製造方法, 面不斉ビピリジン化合物を配位子として用いた金属錯体, 及びそれらを用いた光学活性化合物の製造方法」 鹿又宣弘

出願日:2005年1月28日, 特願2005-21364

2. 「面不斉ターピリジン化合物, その製造方法, 及び面不斉ビピリジン化合物 を配位子として用いた金属錯体」 鹿又宣弘

出願日:2005年2月1日, 特願2005-25347

3. 「光学異性体の光学分割方法,及び光学分割装置」 高橋良和,澤 竜一,小池博之,鹿又宣弘 出願日:2005年3月24日, 特願2005-85027

● 競争的資金

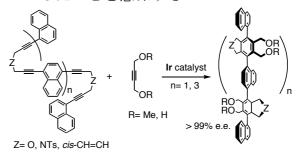
- 1. 文部科学省科学研究補助金 基盤研究 (B) 「面不斉集合分子の創製とその触媒機能」(代表)
- 2. 旭硝子財団 自然科学系研究助成 (特定 B) 「面不斉の多面同時立体制御法の 開発」(代表)

反応有機化学研究室 (柴田研究室)

研究レビュー

(1) 触媒的不斉[2+2+2]付加環化反応による不斉4級炭素の構築

不斉4級炭素中心を持つ化合物は, 多くの天然物の構造に見られるため, その合成法の開発は有機合成化学にお いて非常に有用である.


今回,アルケン部位に置換基(R^2)を有する 1,6-エンインを用いて,アルキンとの分子間不斉[2+2+2]付加環化反応により,不斉 4 級炭素中心を持つ二環性シクロへキサ-1,3-ジエンの合成を試みた.その結果,[$Rh(cod)_2$] BF_4 と不斉リン配位子 tolBINAP より調製されるカチオン性ロジウム錯体を不斉触媒として用いると,付加環化反応が高エナンチオ選択的(>90% ee)に進行した.さらに本反応は,エンインにおけるアルキンとアルケンの架橋部,アルキン,アルケン上の置換基に広い一般性を有する.

5. Org. Lett., **2005**, 7, 4955-4957.

(2) ポリインとアルキンのエナンチオ 選択的[2+2+2]付加環化反応による螺旋 型キラルポリアリール化合物の合成

軸不斉ビアリール骨格の効率的な合成法の開発は、有機合成化学において重要な課題である。当研究室では既に、キラルな Γ 錯体を用いたジインとモノアルキンとの触媒的 Γ [2+2+2] 付加環化反応による Γ 2、対称を持つ軸不斉ターアリール化合物の合成法を開発した。今回、本反応の高立体選択性を活かして、ジイン部分を複数有するポリインを基質として用いるキラルポリアリール化合物の合成を試みた。

その結果,テトライン(n=1)およびオクタイン(n=3)からポリアリール化合物がほぼ完全にエナンチオかつジアステレオ選択的に得られた.これは,キラルイリジウム触媒が4つもしくは8つもの連続した軸不斉を完全にコントロールしたことを意味する.

6. Chem. Commun., 2005, 6017-6019.

(3) 熱的および金触媒を用いた[4+2]付加環化反応によるビアリール類の合成

エンインとアルキンによる[4+2]付加環化反応は、歪みのある環状アレン中間体を経て、異性化により芳香環を構築することが知られている。今回、末端にアリール基を有する1,6-ジインを用いて、アリールアルキンをエンインとするアルキンとの分子内[4+2]付加環化反応を検討した。その結果、カチオン性金触媒を用いた場合、環状アレン中間体より電子環状型の骨格変換により、熱反応とは異なる環化体を選択的に与えた。

2. Synlett, 2005, 2062-2066.

論文など

● 原著論文

1. "Cationic Platinum-Catalyzed Etherification by Intra- and Intermolecular Dehydration of Alcohols"

T. Shibata, R. Fujiwara, and Y. Ueno *Synlett*, **2005**, 152-154.

2. "Thermal and Au(I)-Catalyzed Intramolecular [4+2] Cycloaddition of Aryl-Substituted 1,6-Diynes for the Synthesis of Biaryl Compounds"

T. Shibata, R. Fujiwara, and D. Takano *Synlett*, **2005**, 2062-2066.

3. "Iridium-Catalyzed Enantioselective Cycloisomerization of Nitrogen-bridged 1,6-Enynes to 3-Azabicylo[4.1.0]heptenes"

T. Shibata, (Y. Kobayashi), S. Maekawa, (N. Toshida), and (K. Takagi) *Tetrahedron*, **2005**, *61*, 9018-9024.

"Iridium-Catalyzed Enantioselective Pauson-Khand-type Reaction of 1,6-Enynes"
 T. Shibata, (N. Toshida), (M. Yamasaki), S. Maekawa, and (K. Takagi)
 Tetrahedron, 2005, 61, 9974-9979.

5. "Enantioselective Construction of Quaternary Carbon Centers by Catalytic [2+2+2] Cycloaddition of 1,6-Enynes and Alkynes"

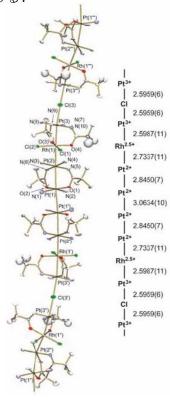
T. Shibata, Y. Arai, and Y. Tahara *Org. Lett.*, **2005**, *7*, 4955-4957.

6. "Ir-catalyzed Almost Perfect Enantioselective Synthesis of Helical Polyaryls Based on an Axially-Chiral Sequence"

T. Shibata, and K. Tsuchikama *Chem. Commun.*, **2005**, 6017-6019.

- 主な招待・依頼講演
 - 1. 「イリジウム, ロジウム触媒による付加環化反応」 Organometallic Seminar, 東京農工大学, 2005 年 6 月
 - 2. 「イリジウム触媒を用いる付加環化反応の開発」 第22回有機合成化学夏季大学,高山市民会館,2005年9月
 - 3. 「触媒的不斉付加環化反応を利用した光学活性環状化合物の効率的合成」 第 96 回触媒討論会,熊本大学,2005 年 9 月

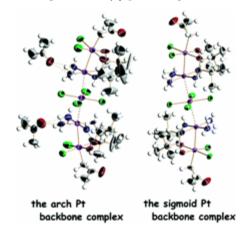
● 競争的資金


- 1. 文部科学省科学研究補助金 特別推進研究「不斉自己増殖反応の開拓および超高感度不斉認識・不斉の起源解明への応用」(分担)
- 2. 文部科学省科学研究補助金 基盤研究(B)「メタラクムレン類の特性を活かした炭素骨格形成法の開発」(代表)
- 3. 文部科学省科学研究補助金 萌芽研究「触媒的不斉付加環化反応を用いる新規 キラル化合物群の創製と評価」(代表)

無機錯体化学研究室(松本研究室)

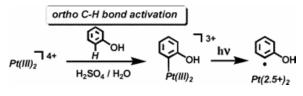
研究レビュー

(1) 白金ーロジウム八核ユニットからなる常磁性擬一次元ハロゲン架橋白金 ーロジウム錯体


Pt二核錯体 [Pt₂(PVM)₂(NH₃)₄](PF₆)₂•H₂O (PVM = t BuCONH) とPtRh二核錯体[PtRh (PVM)₂(NH₃)₂Cl₃]を混合静置することで、Pt四核錯体がPtRh二核錯体によって挟まれたPt₆Rh₂八核ユニットからなり、八核ユニット間がハロゲンで架橋された擬一次元PtRh無限鎖{[PtRh(PVM)₂(NH₃)₂Cl_{2.5}]₂ [Pt₂(PVM)₂(NH₃)₄]₂(PF₆)₆•2MeOH•2H₂O $\}$ _nが茶色単結晶として得られた.この擬一次元PtRh無限鎖はPt四核錯体と他の金属との間に金属一金属結合が形成された初の例である.

- 2. Angew. Chem. Int. Ed., 44, 2-7 (2005).
- (2) 白金…白金相互作用を有する直鎖 状白金(II, III) 五核錯体の合成

Pt(II)単核錯体 [PtX4]²⁻とPt(III)二核錯体


 $[Pt_2(NH_3)_2X'_2(PVM)_2(CH_2COCH_3)]^+(X,X'=Cl,Br)$ との反応により、Pt(II)単核 ユニットがPt(III)二核ユニットに挟まれた構造を持つPt(II,III)五核錯体が得られた。DFT計算により、このPt五核錯体はPt(II)→Pt(III)供与型金属結合により形成されていることが明らかとなった。

5. Inorg. Chem., 44, 8552-8560 (2005).

(3) フェノールの C-H 結合活性化及び アリールボロン酸のトランスメタル化 反応を経たアリール白金(III)二核錯体 の合成

軸位に置換活性な配位子を有するPt(III) 二核錯体とフェノールの水中での反応により、軸位でのオルトC - H結合活性化を経て、2-hydroxyphenyl Pt(III) 二核錯体 $[Pt_2(NH_3)_4('BuCONH)_2(C_6H_4(OH))]^{3+}$ が得られた。本錯体のPt-C結合は、UV照射によりアリールラジカルとPt(III) - Pt(II)常磁性錯体へとホモリティックに開裂することがESR測定により示された。

6. Organometallics, 24, 5528-5536 (2005).

論文など

● 原著論文

1. "Synthesis and fluorescence properties of the europium(III)chelate of a polyacid derivative of terpyridine"

ZhenWasng, Jungli Yuan and Kazuko Matsumoto *Luminescence*, 20, 347-351 (2005).

2. "Paramagnetic Platinum-Rhodium Octamers Bridged by Halogen Ions To Afford a Quasi-ID System"

Kazuhiro Uemura, Koichi Fukui, Hiroyuki Nishikawa, Saiko Arai, Kazuko Matsumoto, and Hiroki Oshio.

Angew. Chem. Int. Ed., 44, 2-7 (2005).

3. "Rapid increase in serum lipid peroxide 4-hydroxynonenal (HNE) through monocyte NADPH oxidase in early endo-toxemia"

Hiroko Kimura, Shuang Liu, Satoshi Yamada, Koji Uchida, Kazuko Matsumoto, Masahiro Mukaida, Ken-ichi Yoshida.

Free Radical Research, 39(8), 845-851 (2005).

4. "Precise Investigation of the Axial Ligand Substitution Mechanism on a Hydrogenphosphato-Bridged Lantern-Type Platinum (III) Binuclear Complex in Acidic Aqueous Solution".

Satoshi Iwatsuki, Chiho Mizushima, Naoyuki Morimoto, Shinji Muranaka, Koji Ishihara, and Kazuko Matsumoto

Inorg. Chem., 44, 8097-8104 (2005).

5. "Synthesis of the Pivalamidate-Bridged Pentanuclear Platinum (II, III) Linear Complexes with Pt-Pt Interactions"

Kazuko Matsumoto, Saiko Arai, Masahiko Ochiai, Wanzhi Chen, Ayako Nakata, Hiromi Nakai, and Shuhei Kinoshita

Inorg. Chem., 44, 8552-8560 (2005).

6. "Synthesis of Aryl-Platinum Dinuclear Complexes via ortho C-H Bond Activation of Phenol and Transmetalation of Arylboronic Acid"

Masahiko Ochiai, Koichi Fukui, Satoshi Iwatsuki, Koji Ishihara, and Kazuko Matsumoto

Organometallics, 24, 5528-5536 (2005).

7. "Rapid and Simple Quantitation of Methamphetamine by Using a Homogenous Time-Resolved Fluoroimmunoassay Based on Fluorescence Resonance Energy Transfer from Europium to Cy5"

Hiroko Kimura, Kazuko Matsumoto, Masahiro Mukaida *J. Anal. Toxicol.*, 29, 799-804 (2005).

● 総説と本

1.「標準化学用語辞典」第2版,日本化学会編,丸善,編集幹事

- 2. 「化学測定の辞典」,梅澤喜夫編,朝倉書店,分担執筆
- 3. 「希土類蛍光錯体の生体成分分析への応用」, 松本和子, Dojin News, 116, 1-7 (2005).

● 特許

- 1.「生化学分析用分離媒体」特願 2005-52058
- 2.「新規な蛍光標識化合物」

● 招待講演

- 1. "Modification and Tuning of Fluorescent Lanthanide Labels for Biotechnology" PACIFICHEM 2005 Congress, December, 2005, Honolulu, USA.
- 2. "Bionano application of lanthanide probes in time-resolved fluorometry" PACIFICHEM 2005 Congress, December, 2005, Honolulu, USA.
- 3. "Double hydroxylation of olefins on dinuclear platinum (III) compounds" PACIFICHEM 2005 Congress, December, 2005, Honolulu, USA.
- 4. "Fluorescent Lanthanide Compounds as Labels for Time-Resolved Bioanalysis" Chinese Academia Sinica in Taipei, November 23, 2005.
- 5. "Synthesis of Amidate-bridged Pt(III) Dinuclear Compounds and the Reactions with Ketones, Alkenes, and Alkynes"

 Tamkang Univ., November 22, 2005.
- "One-dimentional Pt-Pt (II, III) and Pt-hetero metal amidate-supported metal chain compounds having extensive electron delocalization" Kaohsiung Univ., November 21, 2005.
- "Amidate-bridged platinum and other metal chain complexes for olefin reactions and solid state properties" Univ Zaragoza, April 13, 2005.
- 8. "Transition Metal Complexes in Advanced Technology: from Life to Nano Science" Philippines Society of Chemistry, Inorganic Chemistry Symposium, Manila, Jan 14, 2005.

● 受賞

1. 2005 年度日本分析化学会学会賞 「希土類蛍光錯体ラベル剤を用いる超高感度時間分解蛍光検出法の開発」 松本和子, 2005.9.15

- 2. 日本分析化学会第 54 年会ポスター賞 「希土類蛍光錯体を含有するシリカナノ粒子を用いた核酸検出」 谷田泰常、西岡琢哉、松本和子 2005.5
- 3. 第 55 回錯体化学討論会 ポスター賞 「白金ーロジウム混合原子価多核錯体の合成と一次元集積化」 植村一広、山崎加奈、福井孝一、西川浩之、松本和子 2005.9

● 競争的資金

- 1. JST 戦略的創造研究推進事業「医療に向けた化学・生物系分子を利用したバイオ素子・システムの創製」領域「金属錯体プローブを用いる遅延蛍光イメージング」
- 2. JST 研究成果最適移転事業 プレベンチャー「希土類錯体SNPS(一塩基多型)解析システム」
- 3. 科研費 特定領域研究「一次元長鎖白金-白金結合錯体の光反応性・伝導性」
- 4. 学術振興会 学術創成「マイクロチップ集積化による反応・機能制御システムの開発」
- 5. NEDO「大学発事業創出実用研究開発事業」松本和子(代表)セイコーイン スツル㈱ 伊藤哲雄

無機反応化学研究室(石原研究室)

研究レビュー

(1) α-ピリドン架橋 Pd(II) 二核錯体の異性化反応機構

 α -ピリドン架橋の HH 型エチレンジアミン白金(II)二核錯体($[Pd_2(en)_2(\mu-\alpha-pyridonato)_2]^{2+}$)は、水溶液中で HT 型錯体へ異性化することが 195 Pt NMR により示されている.この反応は特異な反応で、結合開裂を伴う分子内機構で進行する.置換活性な Pd(II)につても、全く同様な錯体が得られ、水溶液中で HT 型錯体へ異性化することが分かっているが、反応機構は明らかになっていない.本研究では、 1 H NMR 法を用いて、Pd(II)二核錯体がどのように異性化するのかを詳細に検討した.

種々の水素イオン濃度の下で「H NMR スペクトルを測定したところ、二核錯体 (HH, HT)と単核錯体(A, B, C, m)の存在比が溶液の pD (= -log[D[†]])によって大きく変化することがわかった。そのため、ストップトフローNMR 装置を用いて、pH ジャンプの実験を行った。結果を図1に示す。pD ジャンプ後、初め HH 錯体とHT 錯体のピーク強度は共に増加し、後にHT 錯体の強度は減少するが、HH 錯体の強度は更に増加することがわかる。後半の HH 錯体の増加と HT 錯体の減少

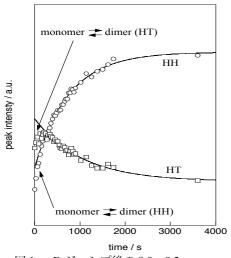
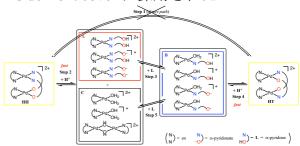
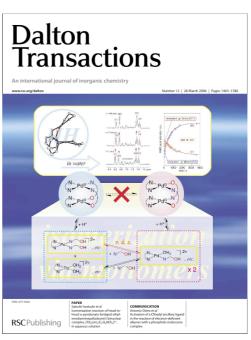



図 1 pD ジャンプ後の 8.0~8.2 ppm のシグナルの経時変化


は, 完全な一次反応であった.

¹H NMR の結果を精密解析することにより、異性化反応機構は Scheme 1 で表されることが分かった. すなわち、Pd(II)二核錯体の場合には、HH 錯体から HT 錯体への直接の異性化の反応経路は存在せず、異性化は単核錯体のみを経由して起こり、律速段階は Scheme 1 中の Step 3 である. また、異性化反応が一次反応であったのは、単核錯体間の緩和過程を二核錯体の増減によりモニターしているためである.

本研究成果は、国際的に高い評価を 受け、*Dalton Trans*., Issue 12 (2006)の Inside front cover に採用された.¹⁾

Scheme 1 HH型 Pd(II)二核錯体の異性化反応機構

(1) Dalton Trans., 1497-1504 (2006).

論文

• 原著論文

- "Synthesis and Reactivity of the Macrobicyclic Complexes (1,5,8,12-Tetraaza-17-oxabicyclo[10.5.2]nonadecane)cobalt(III) perchlorate, [Co(L₁)(ClO₄)](ClO₄)₂, (1,4,8,11-Tetraaza-17-oxabicyclo[9.5.3]nonadecane)cobalt(III) perchlorate, [Co(L₂)(Cl)](ClO₄)₂, (4,8-Dimethyl-1,4,8,11-tetraaza-17-oxabicyclo[9.5.3]nonadecane)cobalt(III) perchlorate, [Co(L₃)(ClO₄)](ClO₄)₂ and (4,8-Dimethyl-1,5,8,12-Tetraaza-17-oxabicyclo[10.5.2]nonadecane)cobalt(III) perchlorate, [Co(L₄)(ClO₄)](ClO₄)₂. Crystal Structure of the L₂ Complex."
 T. Rodopoulos, K. Ishihara, M. Rodopoulos, M. J. Zaworotko, M. Maeder, and A. McAuley
- 2. "Fast Trigonal/Tetragonal Interconversion Followed by Slow Chelate-Ring Closure in
 - Y. Yamamoto, T. Matsumura, N. Takao, H. Yamagishi, M. Takahashi, S. Iwatsuki, and K. Ishihara

Inorg. Chim. Acta, 358, 3355-3361 (2005).

Can. J. Chem., 83, 894-902 (2005).

the Complexation of Boronic Acids"

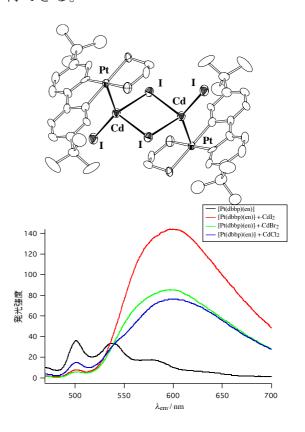
- 3. "Direct kinetic measurements for the fast interconversion process between trigonal boronic acid and tetragonal boronate ion at low temperatures"T. Matsumura, S. Iwatsuki, and K. Ishihara, *Inorg. Chem. Commun.*, 8, 713-716 (2005).
- 4. "Precise Investigation of the Axial Ligand Substitution Mechanism on the Hydrogenphosphato-bridged Lantern-Type Platinum(III) Binuclear Complex in Acidic Aqueous Solution"

 S. Investoria G. Migushima N. Marimeta S. Muraneka K. Ishihara and K. Matsumeta
 - S. Iwatsuki, C. Mizushima, N. Morimoto, S. Muranaka, K. Ishihara, and K. Matsumoto *Inorg. Chem.*, **44**, 8097-8104 (2005).
- "Synthesis of the Aryl-Platinum(III) Dinuclear Complexes via Ortho C-H Bond Acrivation of Phenol and Transmetallation of Arylboronic Acid"
 M. Ochiai, K. Fukui ,S. Iwatsuki, K. Ishihara, and K. Matsumoto Organometallics, 24, 5528-5536 (2005).

錯体化学研究室(山口研究室)

研究レビュー

(1) 多段階多電子の酸化還元挙動を示す 多核錯体


ルテニウム三核錯体, [Ru₃0(RC00)₆]⁺, をユニットとし、CO 配位子、2種類の ピリジン誘導体を図に示すように配置 した直鎖型の pyrazine 架橋4量体を合 成し, その電気化学的挙動について測 定を行ったところ, 14 段階 15 電子もの 酸化還元挙動を発現していることが明 らかとなった. 合成した四量体が示す 酸化還元電位は、構成要素となる四つ の単量体のものと比較することにより, 図のように帰属を行うことが出来た. 酸化還元電位に多少のシフトはあるも ののほぼそれらの和となっており,設 計通りに機能が発現していることを示 している. 本研究のような一分子で多 段階多電子酸化還元挙動を示す化合物 は報告例が何例か存在するが、それら は単に酸化還元能を示す化合物を集積 化したにすぎないものであり、異なる 酸化還元電位を持つ数個のユニットを

unit A unit B unit C unit D □ (IV,III,III) (III,III,III) (III,III,II) (III,III) (II,II,II) **‡** 20 μA unit D unit C unit A unit B 1.0 0.0 -1.0 -2.0 E / V vs SSCE

組み合わせて多段階の酸化還元挙動を発現させた例はこれまで無かった.

(2) 供与結合型金属ー金属間結合を有する錯体

白金錯体, [Pt(dbbp)(en)], をドナーとし CdX₂, (X=Cl, Br, I)をアクセプターとした 多核錯体を合成した. 得られた錯体は 2つの Iイオンにより架橋され2量化し た, 四核錯体, [{Pt(dbbp)(en)},{CdX,},], であった、X=Iの錯体について構造解析 を行ったところ Cd-Cd 間には結合はな いが Pt-Cd 距離は 2.667(2) Å であり非常 に強い供与型金属-金属結合が形成さ れていることが明らかになった. また これらの混合金属錯体の発光特性を調 べたところ, 原料の白金錯体に比べ長 波長シフトした非常に強度の強い発光 を示すことが明らかになった。有機 EL 素子の燐光発光試薬としての応用が期 待できる。

論文など

● 原著論文

- "14 Step 15 Electrons Reversible Redox Behavior of Tetrameric Oligomer of Oxo-Bridged Triruthenium Cluster"
 T. Hamaguchi, H. Nagino, K. Hoki, H. Kido, T. Yamaguchi, B. K. Breedlove, T. Ito *Bull. Chem. Soc. Jpn.* 78, 591-598 (2005)
- 2. "A rock-salt-like lattice structure consisting of monocationic and monoanionic (AuIAgICuII) supramolecular cages of D-penicillaminate A. Toyota, T. Yamaguchi, A. Igashira-Kamiyama, T. Kawamoto, T. Konno *Angew. Chem. Int. Ed.*, **44**, 1088-1092 (2005).

● 競争的資金

- 1. 文部科学省科学研究補助金 特定領域研究(動的錯体・公募)「供与結合型金属ー金属結合を用いた多核錯体の自在構築」(代表)
- 2. 文部科学省科学研究補助金 特定領域研究(配位空間・公募)「電位勾配を有するルテニウム三核錯体多量体」(代表)
- 3. 文部科学省科学研究補助金 萌芽研究「分子型量子ドットセルラーオートマトンを目指した混合原子価環状四核錯体」(代表)
- 4. 日本学術振興会日米共同研究「振動スペクトル線形解析による混合原子価状態の分子内電子移動速度の決定」(代表)
- 5. 倉田奨励金「電解ラマン分光法を用いた混合原子価錯体における分子内電子 移動速度の研究」(代表)